De presentatie wordt gedownload. Even geduld aub

De presentatie wordt gedownload. Even geduld aub

Van Spin tot Kwantumcomputer Door Prof. Henri Verschelde.

Verwante presentaties


Presentatie over: "Van Spin tot Kwantumcomputer Door Prof. Henri Verschelde."— Transcript van de presentatie:

1 Van Spin tot Kwantumcomputer Door Prof. Henri Verschelde

2 Het Feynman Twee Spleten Experiment “We zullen een fenomeen onderzoeken dat onmogelijk, absoluut onmogelijk op een klassieke manier kan verklaard worden en dat het essentiele mysterie van de kwantummechanica is, In feite is dit het enige mysterie” Feynman Lectures, Vol III “Wanneer je geen apparaat hebt om te bepalen door welke spleet het deeltje gaat, kan je niet zeggen dat het ofwel door de ene spleet of door de andere gaat” Feynman, Character of Physical Law “Ik denk dat men gerust kan stellen dat niemand kwantummechanica begrijpt. Zeg niet altijd tegen jezelf: “Maar hoe kan het nu toch zo zijn?” Niemand begrijpt hoe het zo kan zijn.” Feynman, Character of Physical Law

3 Licht=Fotonen=Deeltjes Een gloeilamp van 60 Watt zendt ca. 10 20 = 100 000 000 000 000 000 000 fotonen per seconde uit.

4 Licht=Golven: Interferentie

5 ??? Licht=Deeltje=Golf ???

6 Het Feynman Twee Spleten Experiment LICHT=FOTON en ieder foton op zich wordt beschreven door een GOLF, die door beide spleten tegelijk gaat. HOE KAN DAT? : FEYNMAN: “Als je niet kijkt gedraagt het foton zich alsof het door beide spleten gaat.” MYSTERIE: Hoe kan een deeltje dat twee alternatieven heeft om ergens te geraken (langs spleet 1 OF langs spleet 2) toch verhinderd worden om er te geraken als beide alternatieven toegelaten worden?

7 It from (Qu)Bit “Het essentiele mysterie van de kwantummechanica is terug te voeren tot het fundamentele feit dat de Natuur alleen kan antwoorden met JA of NEEN” “Zolang de Natuur niet heeft geantwoord gedraagt ze zich alsof het antwoord JA en NEEN is” “Als de Natuur zwijgt bevat ze Kwantuminformatie. Als ze antwoordt geeft ze alleen Klassieke Informatie.” John Wheeler Vader van: Theorie der kernfissie (Wheeler-Bohr 1939) Black-Holes (1967) IT FROM BIT (1990) Promotor van Richard Feynman

8 Alle Klassieke Informatie is een antwoord op Ja-Neenvragen Morse TekensJa-Neen vraag “Is het een lang signaal?” A ● ━ N J B ━ ● ● ● J N N N C ━ ● J N D ━ ● ● J N N E ● N F ● ● ━ ● N N J N

9 Binaire Notatie van Natuurlijke Getallen Ja-Neenvraag Binaire Notatie“Is de rest bij deling door 2 gelijk aan 0” 00 0 0J J J 10 0 1J J N 20 1 0J N J 30 1 1J N N 41 0 0N J J 51 0 1N J N 61 1 0N N J 71 1 1N N N - 8 getallen  3 vragen  3 bits - 1 byte = 8 bits = 8 vragen - dvd: 4 gigabyte = 32 000 000 000 Ja-Neenvragen  lees 

10 Klassieke Electronenspin Hoe kunnen we informatie opslaan op microscopische schaal? Wat is de microscopische Ja-Neen vraag? Een electron kan op twee manieren rond de Z-as draaien Tegenwijzerzin Wijzerzin - S z =1/2 - Spin: up - S z =-1/2 - Spin: down OPM: S z =0 is niet mogelijk. Een electron draait ofwel in wijzers- ofwel in tegenwijzerszin en steeds even snel

11 Stern-Gerlachapparaat: De Kwantumbit Lezer Microscopische Ja-Neenvraag (Kwantumvraag) Electrontoestand Kwantum- Binaire Notatie Is de spin up? |0〉 J |1〉 N

12 3-Qu-bit Electrongeheugen GetalElectron toestand Qu-Binaire notatieJa-Neen 0 |000〉 J J J 1 |001〉 J J N 2 |010〉 J N J 3 |011〉 J N N 4 |100〉 N J J 5 |101〉 N J N 6 |110〉 N N J 7 |111〉 N N N

13 Electronenenspin langs X-as Sx=1/2 Spin up |0 〉 Sx=-1/2 Spin down |1 〉 Dus twee Kwantumvragen aan een electron “ Ben je spin up?”  J |0〉= Stern- Gerlach langs Z-as NN |1〉= “ Ben je spin up?”  J |0〉= Stern- Gerlach langs X-as NN |1〉=

14 We vragen |0 〉: “Ben je spin up?” Klassiek: Een electron in |0 〉 - toestand draait volledig langs de Z-as en dus totaal niet langs de X-as. Dus: Kwantummechanisch: IT FROM (QU)BIT De natuur kan alleen antwoorden met JA of NEEN Als we de rode vraag herhaaldelijk stellen dan is de gemiddelde S x : 〈 S x 〉 = ½ - ½ = 0

15 |0 〉= |0 〉+ |1 〉 |1 〉= |0 〉- |1 〉 |0 〉= |0 〉+ |1 〉 |1 〉= |0 〉- |1 〉

16 Interferentie met electronenspin Interferentie: (A)+(B) |0 〉 + |1 〉 = ( |0 〉 + |1 〉) + ( |0 〉 - |1 〉) = 2 |0 〉 = |0 〉

17 Kwantummysterie: In welke bundel ( |0 〉 of |1 〉) bevindt zich het electron direct na SG x als we geen poging doen het te detecteren, als we de Natuur dus niet dwingen om met Ja ( |0 〉) of Neen (|1 〉) te antwoorden?? Oplossing: Als de Natuur zwijgt is het antwoord Ja en Neen: |0 〉 = |0 〉 + |1 〉.

18 Kwantummysterie: In welke bundel ( |0 〉 of |1 〉) bevindt zich het electron direct na SG x als we geen poging doen het te detecteren, als we de Natuur dus niet dwingen om met Ja ( |0 〉) of Neen (|1 〉) te antwoorden?? Oplossing: Als de Natuur zwijgt is het antwoord Ja en Neen: |0 〉 = |0 〉 + |1 〉.

19 Kwantummysterie: In welke bundel ( |0 〉 of |1 〉) bevindt zich het electron direct na SG x als we geen poging doen het te detecteren, als we de Natuur dus niet dwingen om met Ja ( |0 〉) of Neen (|1 〉) te antwoorden?? Oplossing: Als de Natuur zwijgt is het antwoord Ja en Neen: |0 〉 = |0 〉 + |1 〉.

20 Kwantummysterie: In welke bundel ( |0 〉 of |1 〉) bevindt zich het electron direct na SG x als we geen poging doen het te detecteren, als we de Natuur dus niet dwingen om met Ja ( |0 〉) of Neen (|1 〉) te antwoorden?? Oplossing: Als de Natuur zwijgt is het antwoord Ja en Neen: |0 〉 = |0 〉 + |1 〉.

21 De Kwantumcomputer 2 Qubit computer: 3 Qubit computer: N Qubit computer: Een N-qubit register bevat 2 N getallen tegelijk. 32-bit kwantum PC: bevat ca. 4 000 000 000 getallen tegelijk |0 〉 = (|0 〉 + |1 〉)( |0 〉 + |1 〉) = |0 〉 |0 〉 + |0 〉 |1 〉 | + |1 〉 |0 〉 + |1 〉 |1 〉 = |00 〉 + |01 〉 + |10 〉 + |11 〉 Of = |0 〉 + |1 〉 + |2 〉 + |3 〉 |0 〉 |0 〉 |0 〉 = (|0 〉 + |1 〉)( |0 〉 + |1 〉)( |0 〉 + |1 〉) = …= … |000 〉 = |0 〉 + |1 〉 + |2 〉 + |3 〉 + |4 〉 + |5 〉 + |6 〉 + |7 〉 |00…0 〉 =|0 〉 + |1 〉 + |2 〉 + … + |2 N -1 〉

22 Technologisch toepassing van Kwantumcomputing Kwantumparallellisme: Een berekening op een N-qubit computer gebeurt op 2 N getallen tegelijk. Kwantum exponentiele speed-up: Algoritme van Shor voor factoriseren van getallen: o factorisatie: 78=2 x 3 x 13 o RSA 576 (174 cijfers): 1881 9881292060 7963838697 2394616504 3980716356 3379417382 7007633564 2298885971 5234665485 3190606065 0474304531 7388011303 3967161996 9232120573 4031879550 6569962213 0516875930 7650257059 factorisatie: 3980750 8642406493 7397125500 5503864911 9906436234 2526708406 3851895759 4638895726 1768583317 x 4727721 4610743530 2536223071 9730482246 3291469530 2097116459 8521711305 2071125636 3590397527

23 o RSA 1536: 1847699703 2117414743 0683562020 0164403018 5493386634 1017147178 5774910651 6967111612 4985933768 4305435744 5856160615 4457179405 2229717732 5246609606 4694607124 9623720442 0222697567 5668737842 7562389508 7646784409 3328515749 6578843415 0884755282 9818672645 1339863364 9319080846 7199043187 4381283363 5027954702 8265329780 2934916155 8118810498 4490831954 5009848393 7752272570 5257859194 4993870073 6957556884 3693381277 9613089230 3925696952 5326162082 3676490316 0365513714 4791393234 7169566988 069 Klassiek algoritme  10 miljard jaar Shor  3 jaar

24 Kwantumcryptografie

25 Kwantumlogica: De kwantummijnendetector

26 Mijn niet op scherp: |0 〉| 〉  |0 〉| 〉 + |1 〉| 〉 = (|0 〉 + |1 〉)| 〉 = |0 〉| 〉  100% |0 〉 en 0% |1 〉

27 Kwantumlogica: De kwantummijnendetector |0 〉| 〉  |0 〉| 〉 + |1 〉| 〉 = (|0 〉 + |1 〉)| 〉 + (|0 〉 - |1 〉)| 〉 = |0 〉| 〉 + |1 〉| 〉 + |0 〉| 〉 - |1 〉| 〉  zowel |0 〉 als |1 〉 (50-50)  kans ¼ (25%) op: |1 〉| 〉 (mijn op scherp/niet ontploft) Mijn wel op scherp:

28 Interpretaties van de Kwantummechanika ?? Hoe kan de Natuur zowel Ja als Neen zeggen ??

29 1 Kopenhagen Interpretatie Filosofie: Positivisme “Fysica handelt niet over de Natuur zoals ze is maar over onze kennis van de Natuur met al haar beperkingen” “We kunnen slechts zeggen dat de Natuur een bepaalde eigenschap vertoont als we die ook meten” |  〉 ?: De golffunctie beschrijft alleen onze kennis van de Natuur. Interpretatie: De Natuur zegt NIET Ja en Neen maar ZWIJGT totdat we haar forceren (door meting, detectie) om te antwoorden met ofwel Ja ofwel Neen. COLLAPSE: |0 〉 = |0 〉 + |1 〉 Meting  |   〉= |0 〉 50% |   〉= |1 〉 50% Natuur zwijgtNatuur antwoord

30 2 Many-Worlds interpretatie (Everett, De Witt, Feynman, Hawking, Weinberg, Gell-Mann, Deutsch) Filosofie: Realisme “Fysica handelt over de Natuur zoals ze is” |  〉 ?: De golffunctie beschrijft de totale objectieve realiteit van de Natuur. Mijn op scherp: |0 〉| 〉  |0 〉| 〉 + |1 〉| 〉 Hoe kan een mijn tegelijk ontploffen en niet ontploffen? |0 〉| 〉| 〉  |0 〉| 〉| 〉 + |1 〉| 〉| 〉 Interpretatie: Ja en Neen zijn even objectief. Bij meting splitst het universum in 2 Parallelle Universa een met “Ja”, een met “Neen”

31 Mijn niet op scherp: Geen splitsing |0 〉| 〉| 〉  |0 〉| 〉| 〉 + |1 〉| 〉| 〉 = (|0 〉 + |1 〉)| 〉| 〉 = |0 〉| 〉| 〉 Mijn op scherp: splitsing in 4 parallelle universa |0 〉| 〉| 〉  |0 〉| 〉| 〉 + |1 〉| 〉| 〉 = (|0 〉 + |1 〉)| 〉| 〉 + (|0 〉 + |1 〉)| 〉| 〉 = |0 〉| 〉| 〉 + |1 〉| 〉| 〉 + |0 〉| 〉| 〉 - |1 〉| 〉| 〉


Download ppt "Van Spin tot Kwantumcomputer Door Prof. Henri Verschelde."

Verwante presentaties


Ads door Google