De presentatie wordt gedownload. Even geduld aub

De presentatie wordt gedownload. Even geduld aub

Havo/vwo D Samenvatting Hoofdstuk 8. Getallenverzamelingen ℕ = positieve gehele getallen ℤ = ℕ + 0 + negatieve gehele getallen ℚ = ℤ + gebroken getallen.

Verwante presentaties


Presentatie over: "Havo/vwo D Samenvatting Hoofdstuk 8. Getallenverzamelingen ℕ = positieve gehele getallen ℤ = ℕ + 0 + negatieve gehele getallen ℚ = ℤ + gebroken getallen."— Transcript van de presentatie:

1 havo/vwo D Samenvatting Hoofdstuk 8

2 Getallenverzamelingen ℕ = positieve gehele getallen ℤ = ℕ negatieve gehele getallen ℚ = ℤ + gebroken getallen ℝ = ℚ + irrationele getallen zoals √11 en sin15° ℂ = ℝ + complexe getallen ( i ). 8.1

3 De verzameling van de complexe getallen Voor het imaginaire getal i geldt i 2 = -1. vb.x 2 = -3 x 2 = 3 · i 2 x = √3 · i v x = -√3 · i x = i√3 v x = -i√3 Een getal van de vorm a + bi met a en b reële getallen en met i 2 = -1 heet een complex getal. ( ℂ ) Bij z = a + bi is het getal a het reële getal van z, notatie a = Re(z). Het getal b is het imaginaire deel van z, notatie Im(z). Het complexe getal  z = a – bi heet de geconjugeerde van z. 8.1

4 Rekenregels voor complexe getallen 8.1

5 Complexe getallen op de GR 8.1

6 Vectoren en complexe getallen Complexe getallen worden getekend in het complexe vlak. De reële as is horizontaal en de imaginaire as is verticaal. De modulus of absolute waarde van een complex getal z is de lengte van de vector die bij het complexe getal hoort.  z  =  a + bi  = z ·  z =  z  2  z 1 · z 2  =  z 1  ·  z 2  8.2

7 opgave 18 re im i 2i2i 3i3i 4i4i -i -2 i 0 a)Re(z) = 4 (4,0i), (4,1i) b)Re(z) = Im(z) (0,0i), (1,1i) c)Re(z) + Im(z) = 2 (0,2i), (2,0i) d)Re(z) – 2 Im(z) = 4 (0,-2i), (4,0i) a b c d 8.2

8 opgave 23a re im i 2i2i 3i3i 4i4i -i -2 i 0 -30° ≤ Arg(z) ≤ 30 ° ∙ ∙ 8.2

9 Vermenigvuldigen met poolcoördinaten  z 1 · z 2  =  z 1  ·  z 2  en arg(z 1 · z 2 ) = arg(z 1 ) + arg(z 2 ) Delen met poolcoördinaten De formule van De Moivre (cos φ + i sin φ) n = cos nφ + i sin nφ 8.3

10 De exacte-waarden-cirkel 8.3

11 De functies f(z) = z + a + bi en f(z) = a · z Bij de functie f(z) = z + a + bi hoort de translatie (a, b) Bij de functie f(z) = az met a een reëel getal hoort de vermenigvuldiging t.o.v. 0 met factor a. Een nulpunt van de complexe functie f is een getal dat op z = 0 wordt afgebeeld. Je krijgt de nulpunten van f door de vergelijking f(z) = 0 op te lossen. Een dekpunt van de complexe functie f is een getal dat op zichzelf wordt afgebeeld. Je krijgt de dekpunten van f door de vergelijking f(z) = z op te lossen. 8.4

12 opgave 49 f(z) = -1½ z i a)Teken verm. met -1½ t.o.v. 0 gevolgd door translatie (3,2) b)f(z) = 0 -1½ z i = 0 -1½ z = -3 – 2i z = 2 + 1⅓ i Het nulpunt is 2 + 1⅓ i c)f(z) = z -1½ z i = z -2½ z = -3 – 2i z = i 4i 3i 2i i im -i -2i -3i re ∙ ∙ ∙ 3+2i 2+4i ∙ ∙ ∙ -3- i 3- i -4i 8.4

13 De functie f(z) = (a + bi)z Bij de functie f(z) = (a + bi)z hoort de draaivermenigvuldiging die bestaat uit de rotatie over arg(a + bi) en de vermenigvuldiging ten opzichte van 0 met factor  a + bi . 8.4

14 Krachten en complexe getallen Bij het rekenen met krachten en snelheden is niet alleen de grootte, maar ook de richting van belang. Het is dan handig om gebruik te maken van vectoren. complex getal z  vector in het platte vlak arg(z)  richting van de vector  z   lengte van de vector Snelheden en complexe getallen Ook van snelheden is vaak de grootte en de richting gegeven. Bij snelheid is het begrip koers van belang. 8.5

15 opgave 67 Bij de krachten horen de complexe getallen z 1 = 120(cos 0° + i sin 0°) = 120 z 2 = 250(cos 35° + i sin 35°) z 3 = 200(cos 100° + i sin 100°) z 4 = 180(cos 170° + i sin 170°) GR  z 1 + z 2 + z 3 + z 4  ≈ 388 arg(z 1 + z 2 + z 3 + z 4 ) ≈ 73° De resultante heeft een grootte van 388 N en maakt een hoek van 73°.met de horizontale as. 8.5

16 opgave 71 Bij de snelheden horen de complexe getallen z 1 = 4(cos(-155°) + i sin(-155°)) z 2 = 3i GR  z 1 + z 2  ≈ 3,9 arg(z 1 + z 2 ) ≈ 160° De resulterende snelheid maakt een hoek van 160° met de horizontale as. De resulterende snelheid is 3,9 km/u en de koers is 290°. > 290° 8.5


Download ppt "Havo/vwo D Samenvatting Hoofdstuk 8. Getallenverzamelingen ℕ = positieve gehele getallen ℤ = ℕ + 0 + negatieve gehele getallen ℚ = ℤ + gebroken getallen."

Verwante presentaties


Ads door Google