De presentatie wordt gedownload. Even geduld aub

De presentatie wordt gedownload. Even geduld aub

Protocol Ernstige RekenWiskunde- problemen en Dyscalculie WSNS Geldrop e.o. Implementatie Bijeenkomst 2.

Verwante presentaties


Presentatie over: "Protocol Ernstige RekenWiskunde- problemen en Dyscalculie WSNS Geldrop e.o. Implementatie Bijeenkomst 2."— Transcript van de presentatie:

1 Protocol Ernstige RekenWiskunde- problemen en Dyscalculie WSNS Geldrop e.o. Implementatie Bijeenkomst 2

2 Doelstellingen Na deze bijeenkomst: Heb je zicht op de werkwijze tijdens het implementatietraject Hebben we gekeken naar onze eigen professionele gecijferdheid Ken je het handelingsmodel en drieslagmodel uit het protocol en de toepassing daarvan Heb je zicht op wat rekensterke scholen doen

3 Implementatietraject -Draaiboeken -Portfolio van de school -Vertaalslag naar de eigen school: Verantwoordelijkheid van leerkrachten, intern begeleider én directie -Opdrachten vanuit de cursussen: terugkoppeling naar het team, na iedere bijeenkomst twee tips en aandachtspunten voor het eigen team

4 Implementatietraject Onderwerpen ib- directie bijeenkomsten Schooljaar 2011-2012: -Handelingsmodel en drieslagmodel -Diagnosticerend rekenen en het groepsplan -Opbrengsten en trendanalyses -Analyse van de eigen school en aanzet voor rekenbeleid en rolverdeling -Aanzet voor afspraken en mogelijkheden samenwerking bovenschools

5 Implementatietraject Onderwerpen ib- directie bijeenkomsten Schooljaar 2012-2013: -Diagnostisch rekengesprek -Dyscalculie -Zwakke rekenaars in de bovenbouw -Sterke rekenaars -…

6 Professionele gecijferdheid Gaat verder dan functionele gecijferdheid Rekenregels kunnen verklaren, bewijzen en van voorbeelden kunnen voorzien Waarom vragen stellen en beantwoorden Contexten bij sommen bedenken Vraagstukken op meerdere manieren en niveaus oplossen Denkmodellen kunnen gebruiken

7 Professionele gecijferdheid (2) Waarom is 12 : 4 hetzelfde als 24 : 8? Kun je dit verklaren? Bewijzen? Uitleggen?

8 Het aantal dropjes wordt groter, maar ook het aantal kinderen waarover de dropjes verdeeld worden. Dus het antwoord blijft hetzelfde. 12:4 = 3 24:8 = 3

9 Professionele gecijferdheid (3) Een kind berekent: 16 x 32 = 10 x 30 + 6 x 2 Laat zien waarom dit fout is.

10 16 x 32 10 x 30 + 6 x 2

11 Welke oplossing(en) is/zijn goed? 7560 : 15 = Myrthe: ik doe eerst 7500:15 en daarna 60:15 en dat tel ik bij elkaar op. Noa: ik verdubbel allebei de getallen want dan wordt mijn deling iets makkelijker. Bas: ik bereken eerst 7560 : 10 en daarna 7560 : 5 en dat tel ik op. Fouad: ik deel 7560 eerst door 5 en daarna deel ik de uitkomst door 3.

12 Bas heeft als enige ongelijk Hij verdeelt het hele ‘bedrag’ eerst over 10 mensen. Dan is dit bedrag al op. Vervolgens wil hij hetzelfde bedrag (dat dus al op is) nog over 5 mensen verdelen. Dat gaat helaas niet. (denk aan het uitgeven van geld) Wil je bewijzen dat de andere drie gelijk hebben? Teken het dan uit, bedenk een context of gebruik makkelijkere getallen.

13 Bedenk een context bij 12 : ¾

14 Ad heeft 12 euro gespaard. Hij wil graag kneedgummetjes trakteren. Een kneedgummetje kost 0.75 cent. Hoeveel mensen kan hij trakteren? Erik gaat hardlopen. Hij heeft 12 liter cola in de berging staan. Elke keer als hij gaat hardlopen drinkt hij een flesje van 0.75 liter. Hoe vaak kan hij gaan hardlopen voordat hij nieuwe cola moet halen?

15 Test jezelf! Ontwikkelassessment Leraar PO Zie http://ontwikkelassessment-leraarpo.nl http://ontwikkelassessment-leraarpo.nl/

16 Twee modellen ERWD Modellen als uitgangspunt voor diagnostisch onderwijzen en goed rekenonderwijs: Handelingsmodel Drieslagmodel

17 Handelingsmodel

18 Handelingsniveau 1: Informeel handelen in werkelijkheidssituaties

19 Handelingsmodel Handelingsniveau 2: Voorstellen – concreet

20 Handelingsniveau 3: Voorstellen – abstract Handelingsmodel

21 Handelingsniveau 4: Formele bewerking uitvoeren Handelingsmodel

22 Handelingsmodel kun je gebruiken voor: - Observeren -Leggen van didactische accenten -Bij rekenproblemen nog sterker: -Langer noodzakelijk om koppelingen te leggen -Langer werken aan onderliggende niveaus -Wel doorwerken naar boven -En koppelingen blijven leggen! Gebruik handelingsmodel

23 Hoe zie je het handelingsmodel terug in de rekenmethode en in de klas?

24 Alleen deze week 20% korting € 220,-- Drieslagmodel

25 Wat ben ik nu te weten gekomen? Deed ik dit efficiënt? Wat ben ik nu te weten gekomen? Deed ik dit efficiënt? Waar gaat dit over? Hoe ziet het er uit? identificatie Hoe pak ik dit aan? Hoe pak ik dit aan? planning leermoment Hoe reken ik dit (snel/kort/handig)uit? rekenvaardigheid

26 Daan en Lisa maken een fietstocht van 21 km. Na 18 km krijgt Daan een lekke band. Hoe ver moeten zij nog? (fietsen / lopen) Oriëntatie

27 Sommige leerlingen weten het antwoord heel vlot en ook goed: 3 km Wat denk je dat er bij deze leerlingen gebeurt Bij de betekenisverlening? Bij de uitvoering? Bij de reflectie? Toepassing

28 1 kaars kost € 2. Je koopt 3 kaarsen. Hoeveel moet je betalen? Oriëntatie

29 Sommige leerlingen doen: 3 + 2 = 5, of 3 – 2 = 1 Andere leerlingen doen: 2 + 2 + 2 = 8 of 3 x 2 = 9 Wat denk je dat er bij deze leerlingen gebeurt Bij de betekenisverlening? Bij de uitvoering? Bij de reflectie? Toepassing

30 Bekijk de contextopgaven in je map. Leerlingen hebben problemen met deze opgaven Probeer bij elke opgave aan te geven: -Waar zouden de problemen kunnen liggen? -Hoe kom je daar achter? -Wat zou je doen? Welke acties zou je nemen? -Welke vragen zou je eventueel willen stellen? Opdracht: Drieslagmodel

31  Het drieslagmodel geeft het probleemoplossend handelen weer, het lost de problemen niet op!  Het laat je op een bepaalde manier kijken naar je onderwijs en geeft aanknopingspunten voor afstemming  Je kunt een eerste analyse / diagnose stellen: de richting van de problematiek kun je vaststellen  Nader onderzoek is altijd nodig Drieslagmodel

32 Het drieslagmodel: observeren Kan de leerling: -Bij een context een bewerking bedenken? -Betekenis verlenen aan de getallen in relatie tot de context? -Bij een kale som een context en/of een tekening bedenken? -Een tekening maken bij een context? -…

33 Het drieslagmodel: observeren Kan de leerling: - De bewerking uitvoeren? -Zo nee, lukt dat dan wel -Met materiaal -Met eenvoudiger getallen -Mbv een model -Welke oplossingsstrategie past de leerling toe? -Is deze oplossingsstrategie efficiënt? -Wat zou de volgende stap kunnen zijn?

34 Het drieslagmodel: observeren Gaat de leerling na: -Of het antwoord kan kloppen? -Wat het antwoord (het getal) betekent? -Koppelt de leerling het antwoord terug naar de context? -Terugblik op oplossings- procedure - ….

35 - Observatie en interventie - eerste analyse en diagnostiek - dagelijks, tijdens de lessen, bij betekenis- verlening (zowel bij kale sommen als bij contextopgaven) - n.a.v. toetsen, voordat je hulpplan opstelt -Kijken naar je lessen / je eigen onderwijs -Waar besteed ik de meeste tijd aan? -Waar hebben de leerlingen de meeste behoefte aan? -….. Signaleer problemen vroeg en doe er wat aan!!! Gebruik van drieslagmodel

36 Verantwoordelijkheden Wie gebruikt het handelingsmodel en het drieslagmodel? Leerkracht Ib’er Rekenspecialist Hoe zie je dit terug op jouw school?

37 Effectief rekenonderwijs Veel rekenproblemen zijn het gevolg van kwaliteitsproblemen in het onderwijs. Niet leuk om te horen Maar… dit betekent dat veel rekenproblemen te voorkomen zijn

38 Schoolbrede aanpak Kwaliteitsversterking is alleen effectief wanneer het hele team erbij wordt betrokken. Speciale rol voor: Leerkracht Directie Interne begeleider en/of rekenspecialist

39 Effectief rekenonderwijs Doelgericht rekenonderwijs en hoge verwachtingen Voldoende tijd besteden aan rekenonderwijs Extra tijd voor zwakke rekenaars Effectieve rekeninstructie Effectief omgaan met verschillen Een goede rekenstart Monitoren van rekenonderwijs

40 Rekensterke scholen Wat doen rekensterke scholen meer in verhouding tot rekenzwakke scholen? Zie: Basisvaardigheden rekenen-wiskunde in het basisonderwijs. Inspectie van het Onderwijs, 2008.

41 Kwaliteitszorg Rekensterke scholen: steken meer energie in het verbeteren van de kwaliteit van het rekenonderwijs Evalueren jaarlijks systematisch de kwaliteit van het onderwijs Werken planmatig aan verbeteractiviteiten Borgen de kwaliteit van het leren en onderwijzen

42 Leerstofaanbod Rekensterke scholen: Bieden de lesstof aan alle kinderen aan Stemmen de leerinhouden af op de onderwijsbehoeften van individuele leerlingen

43 Tijd Rekensterke scholen: Maken efficiënt gebruik van de geplande onderwijstijd Besteden in alle leerjaren meer tijd aan rekenen-wiskunde.

44 Didactisch handelen Rekensterke scholen: De leraren realiseren een taakgerichte werksfeer De leraren leggen duidelijk uit De leerlingen zijn actief betrokken bij de lesinhoud

45 Zorgbeleid Op rekensterke scholen: Wordt de zorg planmatig uitgevoerd en geëvalueerd

46 Goed rekenonderwijs Opdracht: Goed rekenonderwijs op jouw school

47 Opdrachten ‘Onze school in het spoor van het ERWD’: invullen en bespreken Onze school als sterke rekenschool: hoe staan we ervoor? Team informeren over opzet protocol en handelingsmodel / drieslagmodel Literatuur

48 Vooruitblik De volgende keer (13 maart 2012) Diagnosticerend onderwijzen en de fasen van de leerlingen volgens het ERWD Groepsplan rekenen Onze school in het spoor van het ERWD

49 Terugblik


Download ppt "Protocol Ernstige RekenWiskunde- problemen en Dyscalculie WSNS Geldrop e.o. Implementatie Bijeenkomst 2."

Verwante presentaties


Ads door Google