De presentatie wordt gedownload. Even geduld aub

De presentatie wordt gedownload. Even geduld aub

Vwo C Samenvatting Hoofdstuk 14. Regels bij kansrekeningen Somregel Voor elke uitsluitende gebeurtenissen G 1 en G 2 geldt P(G 1 of G 2 ) = P(G 1 ) +

Verwante presentaties


Presentatie over: "Vwo C Samenvatting Hoofdstuk 14. Regels bij kansrekeningen Somregel Voor elke uitsluitende gebeurtenissen G 1 en G 2 geldt P(G 1 of G 2 ) = P(G 1 ) +"— Transcript van de presentatie:

1 vwo C Samenvatting Hoofdstuk 14

2 Regels bij kansrekeningen Somregel Voor elke uitsluitende gebeurtenissen G 1 en G 2 geldt P(G 1 of G 2 ) = P(G 1 ) + P(G 2 ). Complementregel P(gebeurtenis) = 1 – P(complement-gebeurtenis). Productregel Bij twee onafhankelijke kansexperimenten geldt P(G 1 en G 2 ) = P(G 1 ) · P(G 2 ). aantal gunstige uitkomsten aantal mogelijke uitkomsten P(G) = Kansdefinitie van Laplace Bij een kleine steekproef uit een grote populatie mag je trekken zonder terugleggen opvatten als trekken met terugleggen. 14.1

3 De complementregel P(gebeurtenis + P(complement-gebeurtenis) = 1 P(gebeurtenis) = 1 – P(complement-gebeurtenis) P(minder dan 8 witte) = P(0 w)+P(1 w)+P(2 w)+ P(3 w)+P(4 w)+P(5 w)+ P(6 w)+P(7 w) = 1 – P(8 witte) 14.1

4 Het vaasmodel Bij het pakken van knikkers uit een vaas heb je met combinaties te maken. P(2r, 2w, 1b) = ? Volgens de kansdefinitie van Laplace is die kans Het aantal mogelijke uitkomsten is het aantal manieren om 5 knikkers uit de totaal 15 knikkers te pakken. Dat kan op manieren. Het aantal gunstige uitkomsten is het aantal manieren om 2r uit de 8r, 2w uit 4w en 1b uit 3b te pakken. Dat kan op P(4r, 1w, 2b) = ≈ 0,168 aantal gunstige uitkomsten aantal mogelijke uitkomsten manieren = =5 14.1

5 Binomiaal kansexperiment Bij een binomiaal kansexperiment is : n het aantal keer dat het experiment wordt uitgevoerd X het aantal keer succes p de kans op succes per keer de kans op k keer succes is gelijk aan P(X = k) = · p k · (1 – p) n – k. nknk 14.1

6 De notaties binompdf(n, p, k) en binomcdf(n, p, k) 14.1

7 Werkschema: het maken van opgaven over binomiale kans- experimenten 1.Omschrijf de betekenis van de toevalsvariabele X 2.Noteer de gevraagde kans met X en herleid deze kans tot een vorm met binompdf of binomcdf. 3.Bereken de gevraagde kans met de GR. P(X minder dan 4) = P(X < 4) = P(X ≤ 3) P(X tussen 5 en 8) = P(X ≤ 7) – P(X ≤ 5) = P(X = 6) + P(X = 7) 14.1

8 Kansbomen Bij het uitvoeren van 2 of meer kansexperimenten kun je een kansboom gebruiken. Je gaat als volgt te werk : Zet de uitkomsten bij de kansboom. Bereken de kansen van de uitkomsten die je nodig hebt. Vermenigvuldig daartoe de kansen die je tegenkomt als je de kansboom doorloopt van START naar de betreffende uitkomst. 14.2

9 Draaiende schijven Bij het draaien van de schijven hoort de volgende kansboom 14.2

10 Normale verdeling Werkschema: aanpak bij opgaven over de normale verdeling 1.Schets een normaalkromme en verwerk hierin µ, σ, l, r en opp. 2.Kleur het gebied dat bij de vraag hoort. 3.Bereken met de GR het ontbrekende getal. 4.Beantwoord de gestelde vraag. 14.3

11

12 De oppervlakte links van a is gelijk aan 0,56 Je kunt de bijbehorende grens met de GR berekenen. We gebruiken hierbij de notatie a = invNorm(0.56, 18, 3) de oppervlakte links van a - 18 het gemiddelde μ - 3 de standaardafwijking σ Is de oppervlakte onder de normaalkromme links van a bekend, dan is a = invNorm(opp links, μ, σ) Grenzen berekenen met de GR 14.3

13 In figuur 8.20 is een normaalkromme getekend. Onder de normaalkromme is de bijbehorende relatieve cumulatieve frequentiepolygoon getekend. In figuur 8.21 is de schaal op de verticale as veranderd. Vanaf 50% wordt de schaal zowel naar boven als naar beneden uitgerekt en wel zodanig, dat de grafiek een rechte lijn is. Papier met deze schaalverdeling heet normaal-waarschijnlijkheidspapier. Normaal-waarschijnlijkheidspapier 14.3

14 werkschema : zo onderzoek je of bij een verdeling een normale benadering is toegestaan en zo schat je μ en σ. 1Bereken van elke klasse de relatieve cumulatieve frequentie. 2Zet deze relatieve cumulatieve frequenties uit op normaal-waarschijnlijkheidspapier, telkens boven de rechtergrens van de klasse. 3Ga na of de punten bij benadering op een rechte lijn liggen. Zo ja, dan is de normale benadering toegestaan. Teken de lijn. 4Lees op de horizontale as μ af bij de relatieve cumulatieve frequentie 50. 5Lees op de horizontale as μ + σ af bij de relatieve cumulatieve frequentie 84. Hieruit volgt σ. 14.3

15 Som en verschil van toevalsvariabelen De som en het verschil van de normaal verdeelde toevalsvariabelen X en Y zijn weer normaal verdeeld. De verwachtingswaarde en de standaardafwijking van S = X + Y en V = X – Y bereken je met µ S = µ X + µ Y en respectievelijk µ V = µ X – µ Y en De formules voor σ S en σ V mag je alleen gebruiken als X en Y onafhankelijk zijn. Voor de som S = X 1 + X 2 + X 3 + … + X n van n onafhankelijke toevalsvariabelen X 1, X 2, …, X n geldt en 14.3

16 Steekproef van lengte n Gegeven is een populatie met een normaal verdeelde toevalsvariabele X. Bij een steekproef van lengte n uit deze populatie is X som = X + X + X + … + X (in termen) normaal verdeeld met en 14.4

17 Het steekproefgemiddelde - wet: Bij een normaal verdeelde toevalsvariabele X met gemiddelde µ X en standaardafwijking σ X is bij steekproeflengte n het steekproefgemiddelde normaal verdeeld met en Bij een grote steekproef, bijvoorbeeld een steekproef met n > 1000, zal de spreiding heel klein worden. Het steekproefgemiddelde zal dan heel dicht bij het theoretische gemiddelde µ X liggen. Je krijgt dus een goede schatting van µ X door te berekenen voor grote waarden van n. 14.4

18 Discrete en continu verdelingen Bij een continu toevalsvariabele kan elke waarde tussen twee uitkomsten aangenomen worden. Bij een discrete toevalsvariabele worden alleen een aantal ‘losse’ waarden aangenomen. Bij het overstappen van een discrete toevalsvariabele X op een continu toevalsvariabele Y moet je een continuïteitscorrectie van 0,5 toepassen: P(X ≤ k) = P(Y ≤ k + 0,5). 14.5

19 Van binomiale verdeling naar normale verdeling binomiale verdeling verwachtingswaarde standaardafwijking Voor grote n mag je de binomiale verdeling benaderen door een normale verdeling. De binomiaal verdeelde toevalsvariabele X kan voor grote n benaderd worden door de normaal verdeelde toevalsvariabele Y met µ Y = np en Voorwaarde is dat np > 5 en n(1 – p) >


Download ppt "Vwo C Samenvatting Hoofdstuk 14. Regels bij kansrekeningen Somregel Voor elke uitsluitende gebeurtenissen G 1 en G 2 geldt P(G 1 of G 2 ) = P(G 1 ) +"

Verwante presentaties


Ads door Google