De presentatie wordt gedownload. Even geduld aub

De presentatie wordt gedownload. Even geduld aub

Regels bij kansrekeningen

Verwante presentaties


Presentatie over: "Regels bij kansrekeningen"— Transcript van de presentatie:

1 Regels bij kansrekeningen
Somregel Hebben de gebeurtenissen G1 en G2 geen gemeenschappelijke uitkomsten, dan is P(G1 of G2) = P(G1) + P(G2). Complementregel P(gebeurtenis) = 1 – P(complementregel-gebeurtenis) Productregel Bij twee onafhankelijke kansexperimenten geldt P(G1 en G2) = P(G1) · P(G2). 13.1

2 Soorten kansberekeningen
Gunstige uitkomsten tellen Maak een rooster of noteer systematisch de gunstige uitkomsten. Vaasmodel gebruiken Bij trekken zonder terugleggen bereken je kansen met combinaties. Productregel gebruiken Bij twee of meer onafhankelijke experimenten bereken je kansen met de productregel. Vuistregel Bij het nemen van een kleine steekproef uit een grote populatie mag je trekken zonder terugleggen opvatten als trekken met terugleggen. Je gebruikt de productregel. Binomiale verdeling De binomiale verdeling is een speciaal geval van de productregel. Bij een binomiaal kansexperiment voer je hetzelfde kansexperiment een aantal keren uit, waarbij je alleen op de gebeurtenissen ‘succes’ en ‘mislukking’ let. Hierbij is X het aantal keer succes, n het aantal keer dat het kansexperiment wordt uitgevoerd en p de kans op succes per keer. Notaties: P(X = k) = binompdf(n, p, k) P(X ≤ k) = binomcdf(n, p, k) 13.1

3 P(rode) = ≈ 0,326 P(4 rode) = ≈ 0,269 P(3 rode, 2 witte en 1 zwarte) = ≈ 0,210 P(3 rode, 2 witte en 1 zwarte) = ≈ 0,136 P(5 keer pakken) = ≈ 0,033 of P(5 keer pakken) = ≈ 0,033 P(7 keer pakken) = P(bij de eerste zes keer 2 rode) · P(rode) = ≈ 0,163 b c d e f

4 P(elk aantal ogen 4 keer) = ≈ 0,015
of P(elk aantal ogen 4 keer) = ≈ 0,015 P(zes keer 2, vier keer 3 en zes keer geen 2 en 3) = ≈ 0,025 P(bij de tiende worp evenveel als bij de derde worp) = = 0,25 b c

5 P(Anton pakt zwarte knikker) = P(mz) = = 0,2
b P(Anton pakt zwarte knikker) = P(mz) = = 0,2 P(Anton pakt rode knikker) = P(krI) + P(mrII) = ≈ 0,586 P(Anton pakt twee keer wit) = P(kwkw) = ≈ 0,036 P(Anton pakt twee keer rood) = P(krIkrI) + P(krImrII) + P(mrIIkrI) + P(mrIImrII) = ≈ 0,318 c d e 13.2

6 P(Nederlander heeft spierpijnklachten) = P(ps) + P(ps)
- b P(Nederlander heeft spierpijnklachten) = P(ps) + P(ps) = 0,01 · 0,7 + 0,99 · 0,2 = 0,205 Aantal = · 0,01 · 0,7 = 70 Aantal = · 0,205 = 2050 Er zijn 2050 personen die spierpijnlachten hebben, waarvan er 70 Parkinson hebben. P(een persoon met spierpijnklachten heeft Parkinson) = ≈ 0,034 Van de personen die spierpijnklachten hebben, heeft maar een klein deel de ziekte van Parkinson, zie vraag e. c d e f 13.2

7 a X = het aantal drukfouten dat op die bladzijde staat. X is binomiaal verdeeld met n = 48 en p = P(X ≥ 2) = 1 – P(X ≤ 1) = 1 – binomcdf(48, , 1) ≈ 0,013 P(X = 2) = binompdf(48, , 2) ≈ 0,012 Je verwacht 0,012 · 280 ≈ 3 bladzijden met twee drukfouten. b

8 Oppervlakte berekenen
opp = normalcdf(a, b, µ, σ) Neem a = –1099 als er geen linkergrens is. Grens berekenen a = invNorm(opp links, µ, σ) 13.3

9 Normale verdeling Werkschema: aanpak bij opgaven over de normale verdeling Schets een normaalkromme en verwerk hierin µ, σ, l, r en opp. Kleur het gebied dat bij de vraag hoort. Bereken met de GR het ontbrekende getal. Beantwoord de gestelde vraag. 13.3

10 opgave 26 a opp = normalcdf(1000, 1099, 1005, 6) ≈ 0,798 Dus 79,8%. b opp = 2 · normalcdf(–1099, 1001, 1005, 6) ≈ 0,505 Dus van 50,5%.

11 opgave 26 c TI normalcdf(–1099, 1000, µ, 8) = 0,02 Voer in y1 = normalcdf(–1099, 1000, x, 8) en y2 = 0,02 De optie intersect geeft x ≈ 1016,4. Dus instellen op een gemiddelde van minstens 1016,4 gram. Casio y1 = P((1000 – x) : 8) en y2 = 0,02.

12 Van de meisjes in Vwo 6 is bekend dat ze gemiddeld 58 kilo wegen en de jongens wegen gemiddeld 64. De jongens hebben een standaardafwijking van 8 kilo en de meisjes van 6 kilo. De Vwo 6 klassen hebben een sok uur en moeten naar de sportvelden fietsen. Een van de meisjes komt altijd met de bus naar school. Haar klasgenoot is genegen om haar mee te nemen achterop zijn fiets. De fiets van deze jonge man kan maximaal 140 kilo dragen. Hoe groot is de kans dat de fiets de sportvelden niet haalt op grond van een gewichtsoverbelasting? Hoe groot is deze kans als de jongen een gemiddeld gewicht heeft?

13 Som en verschil van toevalsvariabelen
De som en het verschil van de normaal verdeelde toevalsvariabelen X en Y zijn weer normaal verdeeld. De verwachtingswaarde en de standaardafwijking van S = X + Y en V = X – Y bereken je met µS = µX + µY en respectievelijk µV = µX – µY en De formules voor σS en σV mag je alleen gebruiken als X en Y onafhankelijk zijn. Voor de som S = X1 + X2 + X3 + … + Xn van n onafhankelijke toevalsvariabelen X1, X2, …, Xn geldt en 13.3

14 opgave 34 De totale afhandelingstijd is T = X + Y. T is normaal verdeeld met µT = µX + µY = = 280 seconden en 5 minuten = 300 seconden opp = normalcdf(300, 1099, 280, ) ≈ 0,083 Dus in 8,3% van de gevallen. seconden

15 opgave 41 De totale tijdsduur is T = X1 + X2 + X3 + X4. T is normaal verdeeld met µT = = 58 seconden en opp = normalcdf(60, 1099, 58, ) ≈ 0,144 Dus in 14,4% van de gevallen. seconden

16 Van de meisjes in Vwo 6 is bekend dat ze gemiddeld 58 kilo wegen en de jongens wegen gemiddeld 64. De jongens en meisjes hebben een standaardafwijking van 7 kilo. De Vwo 6 klassen hebben een sok uur en moeten naar de sportvelden fietsen. Een meisjes tweeling komt altijd met de bus naar school. Hun klasgenoten,ook een tweeling is genegen om haar mee te nemen op hun tandem. De Tandem van de jonge mannen kan maximaal 250 kilo dragen. Hoe groot is de kans dat de fiets de sportvelden niet haalt op grond van een gewichtsoverbelasting?

17 Steekproef van lengte n
Gegeven is een populatie met een normaal verdeelde toevalsvariabele X. Bij een steekproef van lengte n uit deze populatie is Xsom = X + X + X + … + X (in termen) normaal verdeeld met en 13.4

18 opgave 44 Xsom is normaal verdeeld met = 3 · 40 = 120 minuten en minuten. P(Xsom > 135) = normalcdf(135, 1099, 120, ) ≈ 0,140

19 Het steekproefgemiddelde
- wet: Bij een normaal verdeelde toevalsvariabele X met gemiddelde µX en standaardafwijking σX is bij steekproeflengte n het steekproefgemiddelde normaal verdeeld met en Bij een grote steekproef, bijvoorbeeld een steekproef met n > 1000, zal de spreiding heel klein worden. Het steekproefgemiddelde zal dan heel dicht bij het theoretische gemiddelde µX liggen. Je krijgt dus een goede schatting van µX door te berekenen voor grote waarden van n. 13.4

20 opgave 49 a P(X < 25 ⋁ X > 35) = 2 · P(X < 25) = 2 · normalcdf(–1099, 25, 30, 4) ≈ 0,211

21 opgave 49 b is normaal verdeeld met en = 2 · normalcdf(–1099, 25, 30, ) ≈ 0, ≈ 0,000

22 opgave 49 c opp links van 30 – a is = 0,025 30 – a = invNorm(0.025, 30, ) 30 – a ≈ 28,25 a ≈ 1,75

23 opgave 49 d opp links van 29 is 0,0005 is normaal verdeeld met en TI normalcdf(–1099, 29, 30, ) = 0,0005 Voer in y1 = normalcdf(–1099, 29, 30, ) en y2 = 0,0005. De optie intersect geeft x ≈ 173,2. Dus n > 173. Casio Voer in y1 = P((29 – 30) : (4 : )) en y2 = 0,0005.

24 Discrete en continu verdelingen
Bij een continu toevalsvariabele kan elke waarde tussen twee uitkomsten aangenomen worden. Bij een discrete toevalsvariabele worden alleen een aantal ‘losse’ waarden aangenomen. Bij het overstappen van een discrete toevalsvariabele X op een continu toevalsvariabele Y moet je een continuïteitscorrectie van 0,5 toepassen: P(X ≤ k) = P(Y ≤ k + 0,5). 13.5

25 opgave 59 a P(X < 20) = P(X ≤ 19) = P(Y ≤ 19,5) = normalcdf(–1099 , 19.5, 28.2, 4.3) ≈ 0,022 Dus in 2,2%. P(X = 30) = P(29,5 ≤ Y ≤ 30,5) = normalcdf(29.5, 30.5, 28.2, 4.2) ≈ 0,085 P(X > 25) = 1 – P(X ≤ 25) = 1 – P(Y ≤ 25.5) = 1 – normalcdf(–1099, 25.5, 28.2, 4.3) ≈ 0,735 b c

26 Van binomiale verdeling naar normale verdeling
verwachtingswaarde standaardafwijking Voor grote n mag je de binomiale verdeling benaderen door een normale verdeling. De binomiaal verdeelde toevalsvariabele X kan voor grote n benaderd worden door de normaal verdeelde toevalsvariabele Y met µY = np en Voorwaarde is dat np > 5 en n(1 – p) > 5. 13.5

27 opgave 61 a P(X ≤ 100) = binomcdf(300, 0.37, 100) ≈ 0,104 Y is normaal verdeeld met µY = µX = np = 300 · 0,37 = 111 en P(X ≤ 100) = P(Y ≤ 100,5) = normalcdf(–1099, 100.5, 111, ) ≈ 0,105 b

28 opgave 62 a X = het aantal personen dat komt opdagen. P(X ≤ 1300) = binomcdf(1430, 0.9, 1300) ≈ 0,884 De gevraagde kans is 0,844. Stel hij noteert maximaal n reserveringen. Voor welke n is P(X ≤ 1300) > 0,99 ? TI binomcdf(n, 0.9, 1300) > 0,99 Voer in y1 = binomcdf(x, 0.9, 1300). Maak een tabel en lees af voor n = 1416 is y1 ≈ 0,9911 voor n = 1417 is y1 ≈ 0,9888. Dus hij noteert maximaal 1416 reserveringen. Casio Benader X door de normaal verdeelde toevalsvariabele Y met µY = µX = np = 0,9n en P(X ≤ 1300) = P(Y ≤ 1300,5), dus Voer in y1 = P((1300,5 – 0,9x) : ) en y2 = 0,99 De optie intersect geeft x ≈ 1415,8. b = 0,99

29 opgave 64 E(X) = 1440, dus np = 1440 σX = 30, dus 1440(1 – p) = 30 1440 – 1440p = 900 –1440p = –540 p = 0,375 np = 1440 0,375n = 1440 n = 3840


Download ppt "Regels bij kansrekeningen"

Verwante presentaties


Ads door Google