Labo’s Bouwmaterialen Professor Assistenten Prof. dr. ir. J. Wastiels ir. Pieter Minnebo ir. Sven De Sutter
LABO’S BOUWMATERIALEN I. MORTEL / BETON II. GLASVEZEL VERSTEVIGD IPC Vervaardigen + Testen + Interpreteren
I. MORTEL/BETON Cement Zeer fijn Poedervormig Hydraulisch Bindmiddel Water Fijne granulaten Eventueel toevoegstoffen Beton Cement Water Fijne en grove granulaten Eventueel toevoegstoffen
I. MORTEL/BETON i. Cement : Types CEM I (portlandcement) CEM II (portlandcomposietcement) CEM III (hoogovencement) CEM IV (puzzolaancement) CEM V (samengesteld cement)
I. MORTEL/BETON ii. Cement : Klassen • 32,5 42,5 52,5 • 32,5 42,5 52,5 • ~ sterkte-opbouw na 28 dagen (95 % sterkte gegarandeerd) • Doorslaggevende eis na 2 d (ontkisten) 52,5 => 20 MPa 42,5 => 10 MPa 32,5 => niet gegarandeerd Dalende korrelgrootte Stijgende prijs
I. MORTEL/BETON iii. Cement : Extra letter N = normaal R = rapid LA = low alkali LH = low heat HES = high early strength
I. MORTEL/BETON Cement : Hydratatiereactie Cement + water => hydratatiereactie van producten vormt gesteente
I. MORTEL/BETON Cement : Invloed hoeveelheid water • Binding • Verwerkbaarheid • Poriënvolume • Sterkte • …
I. MORTEL/BETON Cement : Invloed hoeveelheid water
I. MORTEL/BETON CEMENT + WATER + ZAND Mortel : Aanmaak 3 balkjes CEM I 52,5 N W/C 0,5 Z/C 2 CEM I 52,5 N W/C 0,35 + SP Z/C 2 CEM I 52,5 R W/C 0,5 Z/C 2 V mortel,nodig ρ mortel = 2,65 g/cm³ → m mortel,nodig
I. MORTEL/BETON Mortel : Proeven op verse mortel > Vicat test • Gemeten op cementbrij met normale consistentie • Begin binding : staafje met sectie 1 mm² blijft op ong 4 mm van de bodem hangen • Einde binding : naald dringt niet meer dan 0,5 mm in (tussen 1 en 12 uur)
I. MORTEL/BETON Mortel : Proeven op verse mortel > Maniabilimeter • Meten van de vloei-eigenschappen (viscositeit) • Prismavormig volume met mortel Wegnemen zijwand + trillen Meten tijd tot bereiken merkteken
I. MORTEL/BETON Mortel : Proeven op verse mortel • OPGELET: manier van verwerken, behandelen en bewaren => uitleg zie normen (homogeen mengen, verdichten, afdekken, onder water bewaren) => onderling vergelijken, invloed van de verschillende variaties kunnen weergeven en bewaren
I. MORTEL/BETON Mortel : Proeven op uitgeharde mortel • Iedere groep test na verschillende tijdstippen • Driepuntsbuigproef • Drukproef
I. MORTEL/BETON Beton
I. MORTEL/BETON Beton : Granulaten
I. MORTEL/BETON CEMENT + WATER + ZAND + GRIND (kleine 4/7 -- grote 7/14) 3 cilinders met een verschillende samenstelling 1 balk met typesamenstelling (G2,G4,G6) Cement 380 kg/m³ Zand 0/2 482 kg/m³ W/C 0,5 Steenslag 7/14 896 kg/m³ Kift 4/7 482 kg/m³ → / m³ beton !
I. MORTEL/BETON Beton : Proeven op vers beton • r ≈ 2400 kg/m³ > Zetmaat (Abramskegel) • Statische eigenschappen: vloeidrempel • Goed om variaties W/C te meten
I. MORTEL/BETON Beton : Proeven op vers beton > Vébétest • Te gebruiken voor beton met geringe verwerkbaarheid • Meten van de vloei- eigenschappen (viscositeit)
I. MORTEL/BETON Beton : Superplastificeerder
I. MORTEL/BETON Beton : Proeven op uitgehard beton • Drukken van de cilinders om de druksterkte te bepalen • Driepuntsbuigproef + druktest op de balk
LABO’S BOUWMATERIALEN I. MORTEL / BETON II. GLASVEZEL VERSTEVIGD IPC Vervaardigen + Testen + Interpreteren
II. GLASVEZEL VERSTEVIGD IPC WAT IS EEN COMPOSIET ?
II. GLASVEZEL VERSTEVIGD IPC WAT IS EEN COMPOSIET ? • Een materiaal dat bestaat uit 2 of meer onderscheidbare fazen, die in minimale proporties (> 5%) aanwezig zijn. • Vaak: VEZEL + MATRIX > vezel: glas, carbon, basalt, … > matrix: meestal polymeren (polyester, vinylester, epoxy, phenolic,polyimide, polyamide, polypropylene,epoxy, …) maar ook inorganische cementen
II. GLASVEZEL VERSTEVIGD IPC • Vezelrichting specifieke eigenschappen in specifieke richtingen 0° +45° +90° -45°
II. GLASVEZEL VERSTEVIGD IPC WAT IS EEN COMPOSIET ? • VEZELS : E-GLAS • MATRIX : PORTLAND CEMENT (pH 11) => AR-glassvezel, … INORGANIC PHOSPHATE CEMENT (pH 7) ; IPC => Low cost E-glassvezels • RESULTAAT: sterk en duurzaam vezelversterkt keramisch materiaal voor diverse applicaties
II. GLASVEZEL VERSTEVIGD IPC Productie van composieten -> IMPREGNEREN VAN DE VEZELBUNDELS Compression Moulding Vaccuum bagging Pulltrusion Resin Transfer Moulding
II. GLASVEZEL VERSTEVIGD IPC Productie van composieten • Industrieel impregneren van de vezelbundels
II. GLASVEZEL VERSTEVIGD IPC Productie van composieten • Hand Lay-Up eenvoudig arbeidsintensief
II. GLASVEZEL VERSTEVIGD IPC Hand-layup Vers IPC mengsel Laminaat in opbouw Glasvezelmat Resultaat
II. GLASVEZEL VERSTEVIGD IPC Toepassingen
II. GLASVEZEL VERSTEVIGD IPC Het Labo Doelstellingen : > Aanmaak van een laminaat > Theoretisch voorspellen van de trekcurve > Trekcurven praktisch bepalen Vereisten voor het verslag: > Korte beschrijving van het materiaal > Wat is een laminaat ? Wat is een composiet ? Hoe wordt het gemaakt ? > Theoretische curve : Wat is de achtergrond van de theorie Bepaling van de verschillende parameters Bespreking: theorie VERSUS praktijk
II. GLASVEZEL VERSTEVIGD IPC Het Labo Doelstellingen : > Aanmaak van een laminaat > Theoretisch voorspellen van de trekcurve > Trekcurven praktisch bepalen Vereisten voor het verslag: > Korte beschrijving van het materiaal > Wat is een laminaat ? Wat is een composiet ? Hoe wordt het gemaakt ? > Theoretische curve : Wat is de achtergrond van de theorie Bepaling van de verschillende parameters Bespreking: theorie VERSUS praktijk
II. GLASVEZEL VERSTEVIGD IPC Aanmaak laminaat 2 laminaten: 40 x 40 cm Random glasvezelmatten in een IPC matrix 6 lagen vezels -> 6 lagen matrix Hand lay-up Laminaat 1: 800 g/m² -> 800 g IPC matrix per m² glasvezelmat + 10% reserve Laminaat 2: 1200 g/m² -> 1200 g IPC matrix per m² glasvezelmat + 10% reserve Samenstelling: 82g poeder voor 100g vloeistof
II. GLASVEZEL VERSTEVIGD IPC Aanmaak laminaat Oppervlakte glasvezelmat: ? IPC laminaat 1: Poeder: ? g Vloeistof: ? g IPC laminaat 2:
II. GLASVEZEL VERSTEVIGD IPC Aanmaak laminaat Oppervlakte glasvezelmat: 0.4 cm x 0.4 cm x 6 lagen = 0.96m² IPC laminaat 1: 800 g/m² x 0.96m² = 768 g 10% reserve -> 845 g Poeder: 845 g x (82/182) = 380 g Vloeistof: 845 g x (100/182) = 464 g IPC laminaat 2: 1200 g/m² x 0.96m² = 1152 g 10% reserve -> 1267 g Poeder: 1267 g x (82/182) = 571 g Vloeistof: 1267 g x (100/182) = 696 g
II. GLASVEZEL VERSTEVIGD IPC Het Labo Doelstellingen : > Aanmaak van een laminaat > Theoretisch voorspellen van de trekcurve > Trekcurven praktisch bepalen Vereisten voor het verslag: > Korte beschrijving van het materiaal > Wat is een laminaat ? Wat is een composiet ? Hoe wordt het gemaakt ? > Theoretische curve : Wat is de achtergrond van de theorie Bepaling van de verschillende parameters Bespreking: theorie VERSUS praktijk
II. GLASVEZEL VERSTEVIGD IPC Avestone Cooper Kelly theorie (ACK – theorie) matrix vezel matrix-vezel interface vezels matrix
II. GLASVEZEL VERSTEVIGD IPC ACK theorie Regime I Regime II Regime III
II. GLASVEZEL VERSTEVIGD IPC Regime I - adhesie tussen matrix en vezel - matrix en vezel vervormen gelijk Regime II Regime III
II. GLASVEZEL VERSTEVIGD IPC Regime I - adhesie tussen matrix en vezel - matrix en vezel vervormen gelijk Regime II - matrix scheuren ontstaan - eerder: matrix-vezel adhesie matrix scheur - nu: matrix-vezel frictie Regime III matrix-vezel onthechting
II. GLASVEZEL VERSTEVIGD IPC Regime I Regime II Regime III - matrix scheuren ontstaan - eerder: matrix-vezel adhesie - nu: matrix-vezel frictie - adhesie tussen matrix en vezel - matrix en vezel vervormen gelijk - matrix-vezel samenwerking blijft bestaan - matrix en vezel vervorming kan verschillend zijn
II. GLASVEZEL VERSTEVIGD IPC ACK theorie : Trekcurve Zone I Zone II Zone III c Zone II mc mc = mu c Zone II mc = spanning waarbij de matrix scheurt mc = rek net voor het ontstaan van de scheuren mu = rek bij bezwijken van de matrix c Zone II = composiet rek na scheurvorming
II. GLASVEZEL VERSTEVIGD IPC ACK theorie: Gevraagd (eB,sB) E1 = E-modulus zone I E3 = E-modulus zone III sB = Breukspanning eB = Rek bij breuk Vf = Vezel volume fractie E3 E1
II. GLASVEZEL VERSTEVIGD IPC Vezel volumefractie (eB,sB) E1 = E-modulus zone I E3 = E-modulus zone III sB = Breukspanning eB = Rek bij breuk Vf = Vezel volume fractie E3 E1
II. GLASVEZEL VERSTEVIGD IPC Vezel volumefractie Massa basis: dichtheid + massa Volume -> experimenteel basis: vezelvolume + totaal volume Eigenschappen vezels Eigenschappen matrix ρ vezels 2540 kg/m³ ρ matrix 2000 σ vezels 1000 MPa σ matrix 7 E vezels 72 Gpa E matrix 18 GPa Gewicht 300 g/m² Vvezel = Vvezel / Vtotaal Vmatrix = Vmatrix / Vtotaal
II. GLASVEZEL VERSTEVIGD IPC E-moduli (eB,sB) E1 = E-modulus zone I E3 = E-modulus zone III sB = Breukspanning eB = Rek bij breuk Vf = Vezel volume fractie E3 E1
II. GLASVEZEL VERSTEVIGD IPC E-moduli Zone 1: basis: mengwet + normaalspanning + adhesie vezel en matrix Zone 2: basis: mengwet + normaalspanning + gebroken matrix Eigenschappen vezels Eigenschappen matrix ρ vezels 2540 kg/m³ ρ matrix 2000 σ vezels 1000 MPa σ matrix 7 E vezels 72 GPa E matrix 18
II. GLASVEZEL VERSTEVIGD IPC Breukspanning Random georiënteerde vezels werken maar voor 1/3 mee!!! Evezels*= Evezels/3 (eB,sB) E1 = E-modulus zone I E3 = E-modulus zone III sB = Breukspanning eB = Rek bij breuk Vf = Vezel volume fractie E3 E1
II. GLASVEZEL VERSTEVIGD IPC Breukspanning basis: mengwet + gebroken matrix Eigenschappen vezels Eigenschappen matrix ρ vezels 2540 kg/m³ ρ matrix 2000 σ vezels 1000 MPa σ matrix 7 E vezels 72 GPa E matrix 18
II. GLASVEZEL VERSTEVIGD IPC Rek bij breuk (eB,sB) E1 = E-modulus zone I E3 = E-modulus zone III sB = Breukspanning eB = Rek bij breuk Vf = Vezel volume fractie E3 E1
II. GLASVEZEL VERSTEVIGD IPC Rek bij breuk = Gemiddelde rek van de vezels bij breuk -> probleem: sommige delen van de vezels omgeven door matrix sommige delen van de vezels omgeven door scheur -> probleem: wat is de afstand tussen de scheuren? => berekening bij maximale en bij minimale scheurafstand -> het zal hier in werkelijkheid ergens tussen liggen
II. GLASVEZEL VERSTEVIGD IPC Rek bij breuk – maximale scheurafstand Fase II ε ε’v Δ εv εbm εm Scheur Scheur
II. GLASVEZEL VERSTEVIGD IPC Rek bij breuk – maximale scheurafstand Fase III ε εbv <εv> Δ εbm Scheur Scheur
II. GLASVEZEL VERSTEVIGD IPC Rek bij breuk Uit Fase II Hoogte = hoogte -> Δσv νfv = σbm νfm Δε v = ε’ v – εbm lineair elastische rek -> Δε v = Δσv / E v -> Δε v = σbm νfm / (E v νfv) * UD vezels!
II. GLASVEZEL VERSTEVIGD IPC Rek bij breuk Uit Fase III Breukrek = gemiddelde rek = <εv> -> <εv> = εbv - ½ Δε v -> <εv> = εbv - ½ σbm νfm / (E v νfv) -> <εv> = εbv - ½ Em εbm νfm / (Ev νfv) -> <εv> = εbv - ½ α εbm met α = Em νfm / (E v νfv) => εb = (σbv / E v) – (σbm νfm / (2 E v νfv) ) * UD vezels!
II. GLASVEZEL VERSTEVIGD IPC Rek bij breuk – minimale scheurafstand Fase II ε ε’v εbm Scheur Scheur Scheur Scheur
II. GLASVEZEL VERSTEVIGD IPC Rek bij breuk – minimale scheurafstand Fase III ε εbv <εv> εbm Scheur Scheur Scheur Scheur
II. GLASVEZEL VERSTEVIGD IPC Rek bij breuk Uit Fase III Breukrek = gemiddelde rek = <εv> -> <εv> = εbv - ¼ Δε v -> <εv> = εbv - ¼ σbm νfm / (E v νfv) -> <εv> = εbv - ¼ Em εbm νfm / (Ev νfv) -> <εv> = εbv - ¼ α εbm met α = Em νfm / (E v νfv) => εb = (σbv / E v) – (σbm νfm / (4 E v νfv) ) * UD vezels!
II. GLASVEZEL VERSTEVIGD IPC Het Labo Doelstellingen : > Aanmaak van een laminaat > Theoretisch voorspellen van de trekcurve > Trekcurven praktisch bepalen Vereisten voor het verslag: > Korte beschrijving van het materiaal > Wat is een laminaat ? Wat is een composiet ? Hoe wordt het gemaakt ? > Theoretische curve : Wat is de achtergrond van de theorie Bepaling van de verschillende parameters Bespreking: theorie VERSUS praktijk