Cursus Rekenspecialist Amarantis vierde bijeenkomst 22 november 2011 1
programma Vier middagen De kaders De rekendidactiek De praktijk Verdiepingsonderwerpen naar keuze
Programma Differentiatie Leerlijn procenten IJsberg voorbeelden Ervaringen uitwisselen Leerlijn procenten IJsberg voorbeelden Bedenk een situatie of visulaisering (model) Evaluatie
Differentiatie
waarom? “Differentiatie is een georganiseerde maar flexibele manier om pro-actief het onderwijs (lesgeven en leren) aan te passen om in te spelen op waar leerlingen zijn en ze te helpen maximaal te groeien” (Tomlinson, 1999)
Leerlingen verschillen: wat kun je doen? Differentieren Verschillen gebruiken Variatie in aanpak ontwikkelen
Voorbeelden en tips uitwisselen Rosana …….
Georganiseerde differentiatie Via het ’rooster’/de organisatie parallel uur met homogene groepen niet elke leerling evenveel ‘les’ etc. regelmatig anders groeperen Binnen de klas/groep Niveau en tempodifferentiatie – voortgezet onderwijs Homogene niveaugroepjes Samen laten werken Klassengesprek daarna gedifferentieerd zelfstandig evt verlengde instructie (basisonderwijs)
Differentiatie naar inhoud Differentiatie in aanbod verschillende opdrachten op verschillend niveau Differentiatie in hulpmiddelen dezelfde opdrachten, maar met of zonder hulpmiddelen Differentiatie in hoeveelheid
Succesvolste vorm van differentiatie Eigen ervaringen Succesvolste vorm van differentiatie
Natuurlijke differentiatie Alle leerlingen hetzelfde materiaal Toegankelijke instap Er is wat te kiezen Veel mogelijkheden dieper/verder te gaan Leerlingen kunnen op eigen niveau (onderdelen van) het probleem oplossen Discussie is noodzakelijk
Voorbeelden Speels Open: Rijtje van 100 3 – 5 – 8 – 21 – 35 Maak zo’n rijtje waar 100 uitkomt. Productief Maak drie opgaven met uitkomst 2,5 Open Samen Ontwerp een parkeerterrein voor deze flat.
Bij de start Vraag deelnemers wat ze al weten Wat betekent het? Wat is het? kun je een voorbeeld geven Waar komt het voor? Waarvoor is het handig/nodig? Geef voorbeelden Geef voorbeelden van hoe jij ermee rekent die je dus zelf kunt maken Wat is er moeilijk aan dit onderwerp?
Opgaven aanpassen Opener maken Open versie: iedereen ‘kiest’ getallen en strategieen op zijn eigen niveau en interpreteert ‘meeste’. Daarna bespreken
Meer structuur bieden Gestructureerde versie: biedt leerling keuzes passend bij wat hij/zij aankan; oplossingsmanier is ‘vrij’. Daarna bespreken.
Parallelle opgaven: andere getallen Eenvoudiger getallen voor leerlingen die meer moeite hebben. Bij bespreken ingaan op overeenkomsten in manier van rekenen en op achterliggend begrip (hier: aftrekken)
Voordelen Iedereen kan aan het werk Zelf mogen kiezen voor getallen en aanpak voelt beter dan steeds voorgestructureerde stapjes moeten volgen Met eenvoudiger getallen toch bezig zijn met dezelfde kernbegrippen
Wat kan je zelf doen met je methode? Focus op de kernbegrippen! Start samen Daarna gedifferentieerd
Inbreng van leerlingen Eigen rekenervaringen - verleden Andere vakken of programma’s Activiteiten waar ‘gecijferdheid’ bij nodig is Geld Vakantie Vervoer
Rekenen ‘verplaatsen’ Ga zelf mee ! Naar praktijklokaal Naar burgerschap Naar ander vak Naar een projectweek Naar de stage (BPV) Naar een rekendag Naar buiten
Ga eens buiten het boekje
Overzicht werkvormen Starten met actualiteit (uit de krant) Kennismakingsopdracht (via foto’s) Check in duo’s (bij kennismaking: sommetjes) Sorteeropdrachten (in groepen) met kaartjes (F-niveaus, procenten-opdrachten, muurtje bouwen) Flappen van eigen werk (IJsberg vullen) Klassikaal oefenen (Zoefi, rekenbeter) Speels oefenen (spelletjes, rekenweb) Denken, Delen, Uitwisselen Rekenmachine dictee of wedstrijd Opdracht bij leeswerk
procenten als voorbeeld leerlijnen procenten als voorbeeld
Wat kunnen basisschool lln? Leg de kaartjes op volgorde van makkelijk naar moeilijk
leerlijnen voorbeeld procenten
Begrip en visualisering Wat zijn procenten/percentages? Waar komen ze voor? Waar/hoe worden ze gebruikt? Notatie en uitspraak Visualisering
Opbouw instrumentarium Hoeveel procent (ongeveer)? Kleur/teken in cirkel of strook ……. % Ook samennemen en aanvullen tot 100%
Rekenen procenten als ‘deel van’ Eenvoudige (anker)percentages 50% 10% 25% (5%) relatie met 10-regel steeds: relatie met breuken en delen met hulp van strook of verhoudingstabel Via 1% of andere vaste regel/procedure evt. met hulp van rekenmachine (rm)
Hoe doet u (uw leerling) dit? € 60
Modellen als brug Strook Dubbele getallenlijn Verhoudingstabel 0 % 50% 85% 100% Strook …? 60 0 % 50% 85% 100% Dubbele getallenlijn …? 60 Verhoudingstabel Percentage 100% 50% 10% 80% 5% 85% Hoeveelheid 60 30 6 48 3 51
5% van €1250,-
Systematisch noteren
verhoudingstabel
van verhouding naar procent toe- en afname procenten als factor (rm) Loon verlaagd van €40 naar €32 per week? Hoeveel procent is dat? Gebruik ook hier een strook!
Van aantal naar precentage
Hoe? Vorig jaar kostte een kerstboom €20,- nu moet ik €25 betalen. De kerstbomen zijn …… % duurder geworden. 100% € 20 € 25 …… %
Van verhouding naar percentage Zo?
Van deel (%) naar geheel (aantal) Waar kom je % tegen? 100%-50%-25%-10% Strook Eenvoudig rekenen Toe- en afname Van verhouding naar % Van % naar kommagetal Boven de 100% leerlijnen ‘Percentage van’ Strook en 1% aanpak Schattend/globaal Van deel (%) naar geheel (aantal)
Opdracht Bespreek in tweetallen: Wat herken je van deze opbouw? Wat wist je al van deze didactiek? Wat kun je ermee met jouw deelnemers/leerlingen? Wat doet je eigen rekenmethode?
Oefenen met IJsberg Bedenk bij elk van de volgende opgaven een situatie en/of een visualisering en/of model
opgaven 3,45 – 2,5
evaluatie
Graag formulier invullen Dank jullie wel! Evaluatie Graag formulier invullen Dank jullie wel!