Hoofdstuk 7: Variantieanalyse hoofdstuk 7

Slides:



Advertisements
Verwante presentaties
Toetsen voor 2 populaties – afhankelijke steekproeven Hoofdstuk 6
Advertisements

Help! Statistiek! Doorlopende serie laagdrempelige lezingen,
Statistische uitspraken over onbekende populatiegemiddelden
KWALITEITSZORG november 2012
Stilstaan bij parkeren Dat houdt ons in beweging
De elektronische verzamelaanvraag Ruben Fontaine Markt- en Inkomensbeheer – dienst Aangiftes.
Kenniscentrum Onderwijs en Opvoeding van de Hogeschool van Amsterdam
‘SMS’ Studeren met Succes deel 1
HC2MFE Meten van verschillen
Toetsen van verschillen tussen twee of meer groepen
Math Candel Universiteit Maastricht. •Achtergrond: –Diagnose probleem –Meetinstrumenten –Conceptueel model •Presentaties van eigen analyses •Voorbeeld.
Paulus' eerste brief aan Korinthe (20) 23 januari 2013 Bodegraven.
Statistiek II Deel 1.
NEDERLANDS WOORD BEELD IN & IN Klik met de muis
BRIDGE Vervolgcursus Vervolg op starterscursus Bridgeclub Schiedam ‘59 info: Maandagavond: 19: – of
November 2013 Opinieonderzoek Vlaanderen – oktober 2013 Opiniepeiling Vlaanderen uitgevoerd op het iVOXpanel.
Uitgaven aan zorg per financieringsbron / /Hoofdstuk 2 Zorg in perspectief /pagina 1.
Global e-Society Complex België - Regio Vlaanderen e-Regio Provincie Limburg Stad Hasselt Percelen.
 Deel 1: Introductie / presentatie  DVD  Presentatie enquête  Ervaringen gemeente  Pauze  Deel 2 Discussie in kleinere groepen  Discussies in lokalen.
STAPPENPLAN GRAMMATICUS.
Ronde (Sport & Spel) Quiz Night !
Natuurlijke Werkloosheid en de Phillipscurve
Een Concert van het Nederlands Philharmonisch Orkest LES 4 1.
Het vergelijken van twee populatiegemiddelden: Student’s t-toets
Beschrijvende en inferentiële statistiek
Kb.1 Ik leer op een goede manier optellen en aftrekken
Beschrijvende en inferentiële statistiek
Nooit meer onnodig groen? Luuk Misdom, IT&T
P-waarde versus betrouwbaarheidsinterval
Statistiek II Hoofdstuk 5: Toetsen voor twee populaties
Statistiek II Hoofdstuk 4: Toetsen voor één populatie
Statistiek II Hoofdstuk 3: Betrouwbaarheidsintervallen en hypothesetoetsing Vanhoomissen & Valkeneers, hoofdstuk 3.
toetsen voor het verband tussen variabelen met gelijk meetniveau
Hoofdstuk 8: Variantieanalyse met herhaalde metingen hoofdstuk 8
Als de som en het verschil gegeven zijn.
Hoofdstuk 6: Controle structuren
FOD VOLKSGEZONDHEID, VEILIGHEID VAN DE VOEDSELKETEN EN LEEFMILIEU 1 Kwaliteit en Patiëntveiligheid in de Belgische ziekenhuizen anno 2008 Rapportage over.
vwo A Samenvatting Hoofdstuk 15
1 introductie 3'46” …………… normaal hart hond 1'41” ……..
Chapter 9. Understanding Multivariate Techniques
Gegevensverwerving en verwerking
Non-parametrische technieken
Meervoudige lineaire regressie
Twee-factor Variantie-analyse
Oefeningen F-toetsen ANOVA.
Afhankelijkheidstabellen
Multifactoriële designs
Wat levert de tweede pensioenpijler op voor het personeelslid? 1 Enkele simulaties op basis van de weddeschaal B1-B3.
Logistische regressie
13 maart 2014 Bodegraven 1. 1Korinthe Want gelijk het lichaam één is en vele leden heeft, en al de leden van het lichaam, hoe vele ook, een lichaam.
Methodologie & Statistiek I Toetsen van twee gemiddelden 6.1.
Construeren van een Tennishal Vergeet-mij-nietjes. Week 13
ribwis1 Toegepaste wiskunde Lesweek 01 – Deel B
ribwis1 Toegepaste wiskunde – Differentieren Lesweek 7
WOT statistiek Inleiding
Hartelijk welkom bij de Nederlandse Bridge Academie Hoofdstuk 9 Het eerste bijbod 1Contract 1, hoofdstuk 9.
17/08/2014 | pag. 1 Fractale en Wavelet Beeldcompressie Les 5.
17/08/2014 | pag. 1 Fractale en Wavelet Beeldcompressie Les 3.
De financiële functie: Integrale bedrijfsanalyse©
In opdracht van NOC*NSF
Centrummaten en Boxplot
Hoorcollege 3 Samenhang tussen variabelen
1 Zie ook identiteit.pdf willen denkenvoelen 5 Zie ook identiteit.pdf.
12 sept 2013 Bodegraven 1. 2  vooraf lezen: 1Kor.7:12 t/m 24  indeling 1Korinthe 7  1 t/m 9: over het huwelijk  10 t/m 16: over echtscheiding  16.
13 november 2014 Bodegraven 1. 2 de vorige keer: 1Kor.15:29-34 indien er geen doden opgewekt worden...  vs 29: waarom dopen?  vs.30-32: waarom doodsgevaren.
1 Week /03/ is gestart in mineur De voorspellingen van alle groten der aarden dat de beurzen zouden stijgen is omgekeerd uitgedraaid.
Baarde en de goede Hoofdstuk 11: Data-analyse
Toetsen van verschillen tussen twee of meer groepen
Transcript van de presentatie:

Hoofdstuk 7: Variantieanalyse hoofdstuk 7 Statistiek 2 Hoofdstuk 7: Variantieanalyse hoofdstuk 7

Hoofdstuk 7: Variantieanalyse type AV? aantal OV? type OV? hoeveel populaties? categorieën afhankelijk? parametrisch non-parametrisch niet in dit boek 1 one sample t-test / z-test chi-square goodness of fit onafh. independent t-test / z-test Rank-sum nominaal 2 afh. dependent t-test Signed-ranks 1 onafh. one way ANOVA Kruskal-Wallis > 2 afh. repeated measures ANOVA Friedman’s ANOVA interval/ ordinaal interval/ ordinaal Pearson correlation Spearman correlation onafh. n-way ANOVA nominaal afh. repeated measures ANOVA gemengd mixed design ANOVA > 1 interval multiple regression gemengd multiple regression 1 onafh. chi-square goodness of fit nominaal 1 nominaal/ ordinaal ≥ 2 onafh. Pearson chi-square Hoofdstuk 7: Variantieanalyse

Variantieanalyse: one way ANOVA & Kruskal-Wallis Vandaag Variantieanalyse: one way ANOVA & Kruskal-Wallis

Variantieanalyse Tot nu toe bij hypothesetoetsing: t-toets en z-toets voor verschil tussen 2 gemiddelden - hebben mensen die therapie A gevolgd hebben minder angst dan mensen die therapie B gevolgd hebben? - besteden jongens en meisjes evenveel tijd aan huiswerk? -> telkens 1 OV (vb. therapie, geslacht) met telkens 2 waarden -> telkens 1 AV (vb. angst, tijd) Hoofdstuk 7: Variantieanalyse

Variantieanalyse Ook mogelijk: toetsen voor verschillen tussen meer dan 2 gemiddelden - is er een verschil in het welbevinden van kinderen met ouders die autoritair, autoritatief of permissief opvoeden? -> telkens 1 OV (vb. opvoedingsstijl) met telkens meer dan 2 waarden (vb. 3) -> telkens 1 AV (vb. welbevinden) eenwegs (‘one way’) variantie-analyse (‘ANOVA’) Bij twee OV: tweewegs (‘two way’) variantie analyse (zie volgende les) Bij meer dan één AV: MANOVA (niet in Statistiek II) Hoofdstuk 7: Variantieanalyse

Variantieanalyse 1. Toetsingssituatie Is er een verschil in gemiddelde tussen groep a, b, c, … op variabele Y? of Is er een effect van variabele X (met niveau’s a, b, c,..) op variabele Y? en: Indien er een effect is, tussen welke groepen is er een verschil? (= post hoc toetsing) Hoofdstuk 7: Variantieanalyse

Variantieanalyse 2. Voorwaarden AV is gemeten op intervalniveau OV wordt als nominaal beschouwd (ook al is OV soms ordinaal) scores van AV zijn in elke populatie normaal verdeeld of aantal deelnemers is in elke populatie groter dan 30 varianties in populaties zijn gelijk (homogeniteit) onafhankelijke steekproeven Assumptie van normaliteit en homogeniteit minder strikt bij gelijke steekproeven Hoofdstuk 7: Variantieanalyse

Variantieanalyse 3. Hypothesen H0: alle populatiegemiddelden zijn aan elkaar gelijk: µa = µb = µc = … = µj als er J populaties zijn H1: minstens twee populatiegemiddelden zijn niet gelijk aan elkaar µj ≠ µj’ voor minstens één paar van j en j’ Dus H1 is NIET µa ≠ µb ≠ µc ≠… ≠ µj H0 wordt getoetst door gebruik te maken van varianties: De tussen-groeps-variantie of between-groups variance mean square between (MSb) De binnen-groeps-variantie of within-groups variance mean square within (MSw) Hoofdstuk 7: Variantieanalyse

Variantieanalyse Within groups Hoofdstuk 7: Variantieanalyse

Variantieanalyse Between groups Within groups Hoofdstuk 7: Variantieanalyse

Variantieanalyse Between groups Within groups Wanneer de verschillen tussen groepsgemiddelden groter worden en de verschillen binnen elke groep ongeveer hetzelfde blijven wordt de between- groups variantie groter ten opzichte van de within-groups varianties. Dus: de verhouding between-groups variantie/within-groups variantie zegt iets over het verschil tussen groepsgemiddelden. Between groups Within groups Hoofdstuk 7: Variantieanalyse

Variantieanalyse MSw = verschillen te wijten aan verschillen tussen personen binnen dezelfde groep = inter-individuele verschillen die niet te wijten zijn aan het effect van de OV = foutenvariantie (varfout) MSb = variantie van groepsgemiddelden + variantie van scores rondom groepsgemiddelden = variantie van de effecten van OV (vareffect) + foutenvariantie (varfout) MSw = varfout MSb = vareffect + varfout Hoofdstuk 7: Variantieanalyse

Variantieanalyse MSb = vareffect + varfout MSw = varfout -> ALS H0 waar is, dwz. vareffect zeer klein is of gelijk is aan 0 DAN: MSb = MSw of MSb / MSw = 1 -> ALS H0 niet waar is, dwz. vareffect verschilt van 0 DAN: MSb > MSw of MSb / MSw > 1 Hoofdstuk 7: Variantieanalyse

Variantieanalyse 4. Toetsingsgrootheid Df b = J – 1 (J =aantal groepen) Df w = N – J (N = totaal aantal waarnemingen; J = aantal groepen) Kansverdeling: F-verdeling (zie bijlage) Vb. Met df b = 3 – 1 = 2 en df w = 27 – 3 = 24 Hoofdstuk 7: Variantieanalyse

Variantieanalyse 5. Beslissingsregels a. Overschrijdingskansen (niet in tabel) Is P r (F) ≤ α ? ja, verwerp H0 neen, verwerp H0 niet Vb. P r (F = 7.13) = 0.0037 voor df b = 2 , df w= 24 P r (= 0.0037) < 0.05 dus H0 verwerpen Hoofdstuk 7: Variantieanalyse

Variantieanalyse b. kritieke waarden Is F ≥ kritieke F waarde bij df teller = df b = J – 1 ja, verwerp H0 df noemer = df w = N - J neen, verwerp H0 niet kritieke F waarde df b = 2 , df w= 24 bij alpha = 0.05 = 3.4 (zie tabel) F (7.13) > Fkritiek (3.4) dus H0 verwerpen Hoofdstuk 7: Variantieanalyse

Variantieanalyse Hoofdstuk 7: Variantieanalyse

Variantieanalyse Wanneer H0 verworpen is weten we dat minstens 2 groepen verschillen mbt. hun gemiddelde -> welke groepen? = post-hoc toetsing We zouden via t-toetsen elk paar van groepen met elkaar kunnen vergelijken (vb. groep 1-2, 2-3, 1-3). Bij elke t-toets gebruiken we een α = 0.05. Probleem: door herhaaldelijk t-toetsen uit te voeren neemt de fout van de 1e soort toe. Oplossing: bij posthoc toetsing corrigeren voor deze hogere kans op fouten van de 1e soort. >> Bonferroni correctie: wanneer we drie groepen vergelijken, alleen besluiten dat er een significant verschil is als P ≤ 0.05/3 (ipv. 0.05) (andere mogelijke correcties: Tukey, Scheffé,...) Hoofdstuk 7: Variantieanalyse

Variantieanalyse Hoofdstuk 7: Variantieanalyse Post-hoc toetsing in SPSS: SPSS output houdt al rekening met deze correctie; dus de P waarden zijn al gecorrigeerd. Als P ≤ 0.05 dan is er een significant verschil tussen beide groepen vb. enkel significant verschil ts. Groep 1-3 Hoofdstuk 7: Variantieanalyse

Variantieanalyse Voorbeeld ANOVA in SPSS: stressreductie door chocolade bij dansers Hoofdstuk 7: Variantieanalyse

Variantieanalyse 6. Effectgrootte 𝑟= 𝑆𝑆 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑆𝑆 𝑡𝑜𝑡𝑎𝑙 𝑟= 𝑆𝑆 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑆𝑆 𝑡𝑜𝑡𝑎𝑙 𝑟= 714.49 11991,961 = 0.060 =0.24 7. Rapportering Er was een significant effect van chocolade op het stressniveau van de dansers, F(2, 99) = 3.14, p = .048, r = .24 . De dansers die geen chocolade aten rapporteerden een hoger stressniveau (M = 65.5, SD = 10.54) dan dansers die twee repen chocolade aten (M = 59.12, SD = 12.27). Het stressniveau van de dansers die één reep chocolade aten (M = 61.32, SD = 8.95) verschilde niet significant van de andere condities. ANOVA stress   Sum of Squares df Mean Square F Sig. Between Groups 714,490 2 357,245 3,136 ,048 Within Groups 11277,471 99 113,914 Total 11991,961 101 Hoofdstuk 7: Variantieanalyse

1 onafh. nominaal 2 afh. 1 onafh. > 2 afh. interval/ ordinaal type AV? aantal OV? type OV? hoeveel populaties? categorieën afhankelijk? parametrisch non-parametrisch niet in dit boek 1 one sample t-test / z-test chi-square goodness of fit onafh. independent t-test / z-test Rank-sum nominaal 2 afh. dependent t-test Signed-ranks 1 onafh. one way ANOVA Kruskal-Wallis > 2 afh. repeated measures ANOVA Friedman’s ANOVA interval/ ordinaal interval/ ordinaal Pearson correlation Spearman correlation onafh. n-way ANOVA nominaal afh. repeated measures ANOVA gemengd mixed design ANOVA > 1 interval multiple regression gemengd multiple regression 1 onafh. chi-square goodness of fit nominaal 1 nominaal/ ordinaal ≥ 2 onafh. Pearson chi-square

Variantieanalyse: two way ANOVA

tweewegs-variantieanalyse Eénwegs-variantie analyse -> 1 OV met meer dan twee waarden -> 1 AV is er een verschil in het welbevinden van kinderen met ouders die autoritair, autoritatief, of permissief opvoeden? Tweewegs-variantie analyse (of: tweefactor-variantie analyse) -> 2 OV wat is het effect van drie verschillende lesmethoden en het geslacht van de leerling op de studieresultaten van leerlingen? = 3 X 2 ANOVA = k x r factorieel design met k = aantal niveaus OV1, r = aantal niveaus OV2 Hoofdstuk 7: Variantieanalyse

tweewegs-variantieanalyse Twee vragen: 1. vraag over hoofdeffect van elke OV op AV 2. vraag over interactie-effect tussen OV1 en OV2 op AV hoe hebben de twee OV’s samen in combinatie een effect op AV? is het effect van de ene OV op AV anders naargelang het niveau van de andere OV? - is het effect van ses op toekomstbeeld anders voor jongens dan voor meisjes? - is het effect van chocolade op stressreductie anders voor beginners dan voor gevorderden? Hoofdstuk 7: Variantieanalyse

tweewegs-variantieanalyse 1. Toetsingssituatie a. Is er een effect van variabele A (met niveaus a1, a2, …) op variabele Y? b. Is er een effect van variabele B (met niveaus b1, b2, …) op variabele Y? = 2 hoofdeffecten c. Is het effect van variabele A anders naargelang het niveau van variabele B (of omgekeerd)? Wat is het effect van de combinatie van A en B op Y? = interactie-effect tussen A en B d. Indien er een hoofdeffect is van A, tussen welke groepen van A is er een verschil? e. Indien er een hoofdeffect is van B, tussen welke groepen van B is er een verschil? = post hoc toetsing Hoofdstuk 7: Variantieanalyse

tweewegs-variantieanalyse 2. Voorwaarden AV is gemeten op intervalniveau OV’s worden als nominaal beschouwd (ook al is OV soms ordinaal) scores van AV zijn in alle populaties normaal verdeeld varianties in populaties zijn gelijk (F-toets of Levene’s toets) onafhankelijke steekproeven Hoofdstuk 7: Variantieanalyse

tweewegs-variantieanalyse 3. Hypothesen Wat is het effect van ses en geslacht op de toekomstverwachting van jongeren? OV1 (A) = ses (laag, midden, hoog) OV2 (B) = geslacht (jongens, meisje) AV = toekomstbeeld score ts. -10 en +10 -> 3 x 2 design (dus 6 populaties - zie les 2: waarden van OV bepalen aantal populaties) a. Is er een hoofdeffect van variabele A (met i niveaus)? H0: alle populatiegemiddelden van A zijn aan elkaar gelijk µ1 = µ2 = µ3 = … = µi als er I groepen zijn van A H1: minstens twee populatiegemiddelden zijn niet gelijk aan elkaar µi ≠ µi’ voor minstens één paar van i en i’ Of in termen van varianties H0: σ²A = σ²W of σ²A / σ²W = 1 H1: σ²A > σ²W of σ²A / σ²W > 1 Hoofdstuk 7: Variantieanalyse

tweewegs-variantieanalyse b. Is er een hoofdeffect van variabele B (met j niveaus)? H0: alle populatiegemiddelden van B zijn aan elkaar gelijk µ1 = µ2 = µ3 = … = µj als er J groepen zijn van B H1: minstens twee populatiegemiddelden zijn niet gelijk aan elkaar µj ≠ µj’ voor minstens één paar van j en j’ Of in termen van varianties H0: σ²B = σ²W of σ²B / σ²W = 1 H1: σ²B > σ²W of σ²B / σ²W > 1 Hoofdstuk 7: Variantieanalyse

tweewegs-variantieanalyse c. Is er een interactie-effect van variabele AxB ? H0: alle populatiegemiddelden van combinatie AxB zijn aan elkaar gelijk: µ11 = µ12 = … = µij als er I x J groepen zijn H1: minstens twee populatiegemiddelden zijn niet gelijk aan elkaar µij ≠ µi’j’ voor minstens één paar van ij en i’j’ Of in termen van varianties H0: σ²AxB = σ²W of σ²AXB / σ²W = 1 H1: σ²AXB > σ²W of σ²AXB / σ²W > 1 Hoofdstuk 7: Variantieanalyse

tweewegs-variantieanalyse 4. Toetsingsgrootheid 4.1 F toets voor hoofdeffect van A met dfA = I – 1 (I = aantal niveaus van A) met dfW = N – (I x J) (N = totaal aantal ) vb. FA = 10/2.02 = 4.95 met dfA = 2 dfW = 24 4.2 F toets voor hoofdeffect van B met dfB = J – 1 (J = aantal niveaus van B) vb. FB = 0.53/2.02 = 0.26 met dfB = 1 dfW = 24 4.3 F toets voor interactie-effect van AxB met dfAxB = (I - 1). (J – 1) met dfW = N – (I x J) (N = totaal aantal) vb. FAxB = 30.54/2.02 = 15.12 met dfAxB = 2 dfW = 24 Hoofdstuk 7: Variantieanalyse

tweewegs-variantieanalyse 5. Beslissingsregels a. Overschrijdingskansen Is P r (F) ≤ α? ja, verwerp H0 neen, verwerp H0 niet >> overschrijdingskans per mogelijk effect (hoofd / interactie) in ANOVA-tabel SPSS b. Kritieke waarden Ook mogelijk via tabel met F-waarden. Hoofdstuk 7: Variantieanalyse

tweewegs-variantieanalyse significant hoofdeffect ses: jongens en meisjes samengenomen is er een effect van ses geen significant hoofdeffect geslacht: 3 ses niveaus samengenomen is er geen significant verschil tussen j en m een interactie-effect: het verschil ts. j en m is niet hetzelfde voor alle niveaus van ses >> post-hoc toetsing nodig om te weten tussen welke groepen er een verschil is. (SPSS) Hoofdstuk 7: Variantieanalyse

tweewegs-variantieanalyse ses laag midden hoog jongens 5,6 4,2 5,13 meisjes 2,4 4,4 7,8 4,87 4 5 6 interactie-effect: het verschil ts. jongens en meisjes is niet hetzelfde voor alle niveaus van ses (lijnen lopen niet parallel) Hoofdstuk 7: Variantieanalyse

tweewegs-variantieanalyse Post hoc analyse bij two-way ANOVA: Zie post-hoc bij one-way ANOVA: niveaus binnen 1 OV vergelijken. (overbodig als er maar 2 niveaus zijn – bv. geslacht. Kijk dan naar gemiddeldentabel) Om alle cellen paarsgewijs te vergelijken: simple effects – enkel met SPSS syntax (zie boek p. 163) ses laag midden hoog jongens 5,6 4,2 5,13 meisjes 2,4 4,4 7,8 4,87 4 5 6 ses laag midden hoog jongens 5,6 4,2 5,13 meisjes 2,4 4,4 7,8 4,87 4 5 6 Hoofdstuk 7: Variantieanalyse

tweewegs-variantieanalyse Interpretatie resultaten ANOVA: via plots van gemiddelden per groep - 4 alternatieve hypothetische situaties (hier geïdealiseerd): 1. Eén hoofdeffect en geen interactie-effect - geen hoofdeffect ses: geen verschil ts. laag-midden-hoog groep wanneer j en m samennemen - wel hoofdeffect geslacht: j scoren hoger dan m wanneer 3 ses groepen samennemen - geen interactie-effect: het verschil ts. j en m is hetzelfde voor alle niveaus van ses (lijnen lopen parallel) Hoofdstuk 7: Variantieanalyse

tweewegs-variantieanalyse 2. Twee hoofdeffecten en geen interactie-effect - een hoofdeffect ses - een hoofdeffect geslacht - geen interactie-effect: het verschil ts. j en m is hetzelfde voor alle niveaus van ses (lijnen lopen parallel) Hoofdstuk 7: Variantieanalyse

tweewegs-variantieanalyse 3. Twee hoofdeffecten en een interactie-effect - een hoofdeffect ses: jongens en meisjes samengenomen is er een effect van ses - een hoofdeffect geslacht - een interactie-effect: het verschil ts. j en m is niet hetzelfde voor alle niveaus van ses (lijnen lopen niet parallel) Hoofdstuk 7: Variantieanalyse

tweewegs-variantieanalyse 4. Geen hoofdeffecten maar wel een interactie-effect - geen hoofdeffect ses: jongens en meisjes samengenomen is er geen effect van ses - geen hoofdeffect geslacht: 3 ses niveaus samengenomen is er geen effect van geslacht - een interactie-effect: het verschil ts. j en m is niet hetzelfde voor alle niveaus van ses (lijnen lopen niet parallel) Hoofdstuk 7: Variantieanalyse

tweewegs-variantieanalyse 6. Effectgrootte Partial Eta squared: interpreteerbaar zoals r te berekenen met SPSS Via ANOVA-dialoogbox > options > estimates of effect size aanvinken Hoofdstuk 7: Variantieanalyse

tweewegs-variantieanalyse Demo two-way ANOVA: effect van chocolade én dansniveau op stress? Hoofdstuk 7: Variantieanalyse

tweewegs-variantieanalyse 7. Rapportering Eerst de potentiële hoofdeffecten bespreken (zie one-way ANOVA, inclusief eventuele post-hoc)  gegevens: gemiddelden, SD, F-waarde, p-waarde, r Daarna potentieel interactie-effect, zelfde gegevens. Hoofdeffecten zijn niet meer relevant als er een interactie-effect is, maar moeten wel gerapporteerd worden. Interpretatie van de resultaten gaat enkel over interactie-effect. Hoofdstuk 7: Variantieanalyse

Hoofdstuk 7: Variantieanalyse type AV? aantal OV? type OV? hoeveel populaties? categorieën afhankelijk? parametrisch non-parametrisch niet in dit boek 1 one sample t-test / z-test chi-square goodness of fit onafh. independent t-test / z-test Rank-sum nominaal 2 afh. dependent t-test Signed-ranks 1 onafh. one way ANOVA Kruskal-Wallis > 2 afh. repeated measures ANOVA Friedman’s ANOVA interval/ ordinaal interval/ ordinaal Pearson correlation Spearman correlation onafh. n-way ANOVA nominaal afh. repeated measures ANOVA gemengd mixed design ANOVA > 1 interval multiple regression gemengd multiple regression 1 onafh. chi-square goodness of fit nominaal 1 nominaal/ ordinaal ≥ 2 onafh. Pearson chi-square Hoofdstuk 7: Variantieanalyse

Kruskal-Wallis toets voor verschil tussen k populaties 1. Toetsingssituatie Is er een verschil in gemiddelde tussen groep a, b, c, … op variabele Y? >> zelfde situatie als eenwegs-variantieanalyse. 2. Voorwaarden AV is niet normaal verdeeld en/of AV is van ordinaal meetniveau Chocolade als afrodisiacum? Gemeten met: Seks is absoluut het allerlaatste waar ik nu aan kan denken. Ik ervaar niet meer of minder zin in seks dan op een doordeweekse dag. Ik voel een onwaarschijnlijke lust tot paren – annuleer de voorstelling!   Hoofdstuk 7: Variantieanalyse

Kruskal-Wallis toets voor verschil tussen k populaties 3. Hypothesen H0: θ1 = θ2 = … = θk H1= “niet H0” bij k niveaus van de OV 4. Toetsingsgrootheid Gebaseerd op rangordening zoals bij Mann-Whitney, grootheid = H >> analyze > non-parametric > legacy dialogs > k independent samples (zie boek 7.3.4) Hoofdstuk 7: Variantieanalyse

Kruskal-Wallis toets voor verschil tussen k populaties 5. Beslissingsregel Is de gerapporteerde overschrijdingskans in SPSS kleiner dan α ? ja > verwerp H0 nee > verwerp H0 niet Is er een effect?  post-hoc toetsen met meerdere Mann-Whitney/Wilcoxon Rank-Sum. Gebruik zo weinig mogelijk tests en hanteer Bonferroni-correctie: α / aantal tests. Hoofdstuk 7: Variantieanalyse

Kruskal-Wallis toets voor verschil tussen k populaties Demo Kruskal-Wallis: chocolade als afrodisiacum? OV : 3 niveaus chocolade – geen, één reep, twee repen AV: ordinale schaal met 3 niveaus Hoofdstuk 7: Variantieanalyse

Kruskal-Wallis toets voor verschil tussen k populaties 6. Effectgrootte Geen effectgrootte voor K-W test algemeen Wel effectgrootte van bijhorenden Mann-Whitney tests – zie H5 Test Statisticsa   lust Mann-Whitney U 359,500 Wilcoxon W 954,500 Z -2,976 Asymp. Sig. (2-tailed) ,003 a. Grouping Variable: chocolade Hoofdstuk 7: Variantieanalyse

Kruskal-Wallis toets voor verschil tussen k populaties 7. Rapportering Een Kruskal-Wallis toets werd uitgevoerd om het effect van het eten van chocolade op de lustgevoelens van dansers na te gaan. Dit effect bleek inderdaad significant, H = 8.71, p = .013. Bijkomend werden de condities zonder chocolade (mean rank = 41), met één reep chocolade (mean rank = 59.91) en twee repen chocolade (mean rank = 53.59) onderling vergeleken door middel van een Wilcoxon rank-sum toets, waarbij een gecorrigeerd significantieniveau van α = .017 werd gehanteerd. Hieruit bleek dat er enkel een significant verschil was tussen de conditie zonder chocolade en de conditie met één reep chocolade (Ws = 954.5, z = -2.976, p = .003, r = -.36). Het verschil tussen de conditie zonder chocolade en de conditie met twee repen chocolade (Ws = 1034.5, z = -1.861, p = .06, r = -.23) noch het verschil tussen de conditie met één reep chocolade en de conditie met twee repen chocolade (Ws = 1105.5, z = -.917, p = .36, r = -.11) waren significant. Hoofdstuk 7: Variantieanalyse

Voorbeeld analyse met k populaties Fetisjisme bij kwartels? (zie Field, 2009) Çetinkaya, Hakan & Domjan, Michael (2006). Sexual fetishism in a quail (Coturnix japonica) model system: Test of reproductive success. Journal of Comparative Psychology, Vol 120(4), Nov 2006, 427-432. Hoofdstuk 7: Variantieanalyse