Natuurkunde V6: M.Prickaerts 21-02-13.

Slides:



Advertisements
Verwante presentaties
Deeltjesmodel oplossingen.
Advertisements

Hoe snel is geluid? Aan het einde van de les moet je in staat zijn om:
§3.7 Krachten in het dagelijks leven
Warmte.
Energie Wanneer bezit een lichaam energie ?
Materialen en moleculen
De wet van Pascal + toepassingen
H2O Herhaling water watermolecuul Vaste fase (toestand) zuurstofatoom
Hoofdstuk 1 Om te beginnen
Chemisch rekenen Bij scheikunde wordt gebruikt gemaakt van het aantal
Temperatuur en volume Uitzetten of krimpen
Moleculen en atomen Hoofdstuk 7.
Weten jullie het nog? Elk voorwerp bestaat uit moleculen
Stoffen en stofeigenschappen
Temperatuur.
Overal ter wereld schieten vrijheidsstrijders
Newton - VWO Arbeid en warmte Samenvatting.
DEELBAARHEID Een stof kan in kleinere deeltjes gesplitst worden.
Fysica Hoofdstuk 1 Druk.
ontleedbarestoffen (bestaan uit moleculen dus meerdere atoomsoorten)
Stoffen, moleculen en atomen
Molair Volume (Vm).
Verbindingen Klas 4.
Rekenen met atomen De mol.
Hoofdstuk 6: QUIZ!.
Stoffen en stofeigenschappen
Welke van onderstaande keuzemogelijkheden is geen stofeigenschap?
Vragen over vragen.  Gebruik de site!   Wat weet je van een stof als de snelheid van moleculen veranderen? van EPN.
dr. H.J. Bulten Mechanica najaar 2007
4.1 Zonder verplaatsing is er geen arbeid
Δ x vgem = Δ t Eenparige beweging
warmte Warmte is een energievorm en is niet hetzelfde als temperatuur.
4.1 verrichten van arbeid Om arbeid te kunnen verrichten heb je energie nodig Beweging energie (kinetische energie) Warmte Elektrische energie Zwaartekracht.
Antwoorden oefenstof Opgave 1 a] 12 N/cm2 = N/dm2 b] 0,8 N/mm2 = N/m2
Afleiding vloeistofdruk formule dl1 + voorbeeld 4 berekening
Hydraulisch werktuig 1 + v.b. opg.
Wrijvingskracht en normaal kracht toegepast
Welke van de dames zakt het diepste
Druk van een vloeistof (Pvl) ontstaat door het gewicht van de
Kinetische energie massa (kg) energie (J) snelheid (m/s)
Deeltjestheorie en straling
Samenvatting H 8 Materie
Natuurkunde Paragraaf 1.5.
Paragraaf 1.5 Volume & inhoud.
Temperatuur en volume: uitzetten of krimpen
Uitzetten en krimpen Faseovergang
Klas 2 m en herhaling voor klas 3 m
Op de maan opdracht 10.
STOFFEN – HET MOLECUULMODEL
1.5 De snelheid van een reactie
1.3 Stoffen en hun eigenschappen
Waar haal je de energie vandaan?
Conceptversie.
Samenvatting Conceptversie.
© Maarten Walraven en Robert Nederlof
Chemische bindingen Kelly van Helden.
Quiz De isochore gaswet. 1) Wat zijn de 4 toestandsgrootheden van een gas? Druk Temperatuur Volume Aantal deeltjes Druk Tijd Snelheid Grootte Pascal Kelvin.
Quiz Het ideaal gas en de toestandsgrootheden van een gas.
HOOFDSTUK 1 STOFFEN.
G.Hoeksema Rietveld Lyceum Doetinchem
Herhaling Hoofdstuk 4: Breking
Herhaling H8 : arbeid Arbeid: de energie die door een krachtbron geleverd wordt bij verplaatsing van een voorwerp. Dit geeft energie toename/afname ALGEMENE.
Diffusie § 10.2 pg 98.
Rekenen met atomen De mol.
Kun je vertellen wat de samenhang is tussen massa (m), Volume (V) en
Structuurveranderingen van stoffen
Hoe snel is geluid? Aan het einde van de les moet je in staat zijn om:
Drijven zinken zweven basisstof 6.
H7 Materie §2 Het deeltjesmodel
H7 Materie §2 Het deeltjesmodel
Transcript van de presentatie:

Natuurkunde V6: M.Prickaerts 21-02-13

Molecuultheorie Stoffen zijn opgebouwd uit zeer kleine deeltjes, moleculen, die weer opgebouwd zijn uit atomen Tussen moleculen werken zwakke aantrekkingskrachten, vanderwaalskrachten Er is ruimte tussen moleculen; intermoleculaire ruimte Moleculen zijn voortdurend in beweging en komen daarbij met elkaar in botsing, hierbij veranderen de snelheden waardoor een molecuul geen constante snelheid heeft Atomos ondeelbaar, op zoek naar maar niet gevonden Zouten metalen moleculaire stoffen

Inwendige energie Moleculen zijn altijd in beweging waardoor ze kinetische energie hebben Daarnaast oefenen ze krachten op elkaar uit waardoor ze potentiële energie hebben Des te groter de afstand, hoe groter de potentiële energie (bekend) Ekin+Epot=Einwendig Krachten op moleculen ladingsverdeling

Aggregatietoestanden Vast; Vaste plaats, regelmatig rooster, trillen zacht op vaste plek Bij hogere temperatuur, harder trillen, meer ruimte tussen moleculen, stof zet uit Vloeibaar; Geen vaste plaats, bewegen kriskras langs elkaar door, grotere ruimte dan bij vast Gas; Geen vaste plaats, grote afstand van elkaar, grote snelheid (krachten) onafhankelijke deeltjes (diffusie)

Faseovergangen

Faseovergang Voor iedere faseovergang is energie nodig/ komt energie vrij Staat in binas, let op de eenheden

Temperatuur Diverse eenheden Celsius, Kelvin, Fahrenheit enz. Zegt iets over de gemiddelde kinetische energie Temperatuurstijging neemt de gemiddelde kinetische energie dus ook toe Natuurkunde; Kelvin, berust op bewegingen C>K +273,15 K>C -273,15

Hydraulisch werktuig 1 + v.b. opg. Een hydraulisch werktuig bestaat uit 2 cilinders die met elkaar verbonden zijn door een buis of slang gevuld met vloeistof. Hierop liggen zuigers. Hydraulisch werktuig 1 + v.b. opg. ? N 7 N Oppervlakte = 32 cm2 Oppervlakte = 4 cm2 Hydraulische vloeistof Bereken de kracht op de blauwe zuiger P kleine zuiger P grote zuiger = De druk onder de zuigers is hetzelfde (dezelfde hoogte in vloeistof) F A F A = 7 4 F 32 Er is dus een krachtvergroting Van 8 X !!!!! = F = 7 x 32 4 F = 56 N

Hydraulisch werktuig 2 + v.b. opg. 13,5 cm vb 1,5 cm A = 2 cm2 De oppervlakte van de grote cilinder is 9 x zo groot A = 18 cm2 De kracht op de grote cilinder is dan ook 9 x zo groot De hoeveelheid vloeistof die verplaats wordt = constant Kleine cilinder : klein oppervlak, grote lengte Grote cilinder : groot oppervlak, kleine lengte Als je de kleine zuiger 13,5 cm verplaatst dan zal de grote cilinder zich 1/9 van deze afstand verplaatsen. In bovenstaand voorbeeld is dit dan 13,5 :9 = 1,5 cm

Simulatie hydraulische pomp Tijdens opgaande beweging van de pomphendel wordt er olie in de cilinderpomp getrokken. Door de aanzuigende werking komt de kleine kogel los en wordt de grote kogel vastgezogen.

Tijdens neergaande beweging van de pomphendel wordt de olie in de hoofdcilinder gepompt. Hierdoor gaat de zuigerstang omhoog. De kleine kogel sluit de weg af door de neerwaarts gedrukte olie, de grote kogel komt hierdoor los.

De roze gekleurde olie staat onder druk.

Blijven pompen … Kleine en grote sluitkogel

en op …

en neer …

en op …

en neer …

en op …

… en neer. Zo is wel hoog genoeg, laten we de zuigerstang nu maar zakken.

Ontsluiter openen

Door het eigengewicht van de zuigerstang zakt de zuigerstang, eventueel geholpen door de aanwezige last.

En we zijn weer bij de Beginstand aanbeland. herhaling

Afleiding vloeistofdruk formule dl1 + voorbeeld 4 berekening Bereken het volume (V) Stap 1 Afleiding vloeistofdruk formule dl1 + voorbeeld 4 berekening 0,2 m 0,1 m 2 m V = l x b x h V = 0,2 x 0,1 x 2 V = 0,04 m3 Bereken de massa (m) Stap 2 2 m m =  V x m = 800 x 0,04 m = 32 kg Bereken zwaartekracht (Fz) Stap 3 0,1 m Fz = m x g 0,2 m Fz = 32 x 10 Fz = 320 N Hoe groot is de druk op 2 m diepte in een bak gevuld met olie ( = 800 kg/m3). Bereken de druk (P) Stap 4 P = F A Kies een oppervlakte maakt niet uit hoe groot ! A = l x b A = 0,2 x 0,1 Beschouw het als een balk die gemaakt is van olie. P = 320 N 0,02 m2 (Je hebt als eens een druk van een ijzeren balk berekend) A = 0,02 m2 P = 16000 N/m2 Bereken op dezelfde manier de druk op de bodem van bovenstaande balk

Afleiding vloeistofdruk formule dl2 Bereken het volume (V) Stap 1 P = F A Afleiding vloeistofdruk formule dl2 V = l x b x h A = l x b V = 0,2 x 0,1 x 2 F Fz = m x g V = 0,04 m3 P = l x b Bereken de massa (m) Stap 2 m = V  x m x g m = V  x P = m = 0,04 x 800 l x b m = 32 kg V x  x g V = l x b x h P = Bereken zwaartekracht (Fz) Stap 3 l x b Fz = m x g l x b x h x  x g Fz = 32 x 10 P = l x b Fz = 320 N Formule voor vloeistofdruk Bereken de druk (P) Stap 4 P = h x  x g P = F A A = l x b Valversnelling in N/kg A = 0,2 x 0,1 P = 320 N 0,02 m2 Dichtheid in kg/m3 A = 0,02 m2 Hoogte (diepte) in m P = 16000 N/m2 Uit voorbeeld P = 2 x 800 x 10 = 16000 N/m2 (Pa)

Voorbeeld 5 berekening De duikboot hiernaast maakt onderwater foto’s. Het kijkglas in de duikboot kan een maximale druk van 220000 Pa verdragen. a] Bereken tot welke diepte deze duikboot in zout water ( = 1030 kg/m3) maximaal kan afdalen. Pvl = h x  x g 220000 = h x 1030 x 10 h = 21,36 m b] Het kijkglas heeft een oppervlakte van 25 dm2. Bereken de kracht op het glas als deze duikboot 12 m diep is. Pvl = h x  x g 25 dm2 = 0,25 m2 Pvl = 12 x 1030 x 10 Pvl = 123600 Pa P = A F 123600 = 0,25 F   F = 30900 N