Jo van den Brand Les 5: 3 december 2015

Slides:



Advertisements
Verwante presentaties
Kosmologie 17 april 2014 prof Stan Bentvelsen en prof Jo van den Brand
Advertisements

Jo van den Brand 10 November, 2009 Structuur der Materie
Energie Wanneer bezit een lichaam energie ?
toepassingen van integralen
Newton - HAVO Energie en beweging Samenvatting.
College Fysisch Wereldbeeld versie 5
FEW Cursus Gravitatie en kosmologie
Afstanden in het heelal
Physics of Fluids – 2e college
Witte dwergen, Neutronensterren en Zwarte Gaten
J.W. van Holten Metius, Structuur en evolutie van de kosmos.
Verleden, heden en toekomst van ons absurde heelal
Newton - VWO Energie en beweging Samenvatting.
College Fysisch Wereldbeeld 2
College Fysisch Wereldbeeld 2
Large-scale structure
Het Uitdijend Heelal Prof.dr. Paul Groot Afdeling Sterrenkunde, IMAPP
1. Newtoniaanse Kosmologie GeschiedenisGeschiedenis De FriedmannvergelijkingenDe Friedmannvergelijkingen Open en gesloten heelalOpen en gesloten heelal.
HOVO cursus Kosmologie Voorjaar 2011 prof.dr. Paul Groot dr. Gijs Nelemans Afdeling Sterrenkunde, Radboud Universiteit Nijmegen.
Het Relativistische Heelal prof.dr. Paul Groot Afdeling Sterrenkunde, IMAPP Radboud Universiteit Nijmegen.
Zwarte Gaten Prof.dr. Paul Groot Afdeling Sterrenkunde
HOVO cursus Kosmologie Voorjaar 2011
Alles uit (bijna) Niets
Ontstaan van het heelal
Relativiteitstheorie (4)
dr. H.J. Bulten Mechanica najaar 2007
Gideon Koekoek 21 November 2007
Gideon Koekoek 8 september 2009
Jo van den Brand Relativistische inflatie: 3 december 2012
Jo van den Brand Relativistische kosmologie: 26 november 2012
FEW Cursus Gravitatie en kosmologie Jo van den Brand & Jeroen Meidam
Jo van den Brand & Jeroen Meidam ART: 5 november 2012
FEW Cursus Gravitatie en kosmologie
2. Elektrisch veld en veldsterkte
6. De Kosmologische Constante
HOVO cursus Kosmologie Voorjaar 2011
H 11: Growth of Structure in the Universe Dave de Jonge Rutger Thijssen juni 2005.
Creativiteit in de kosmos: onze ultieme schatkamer
Jo van den Brand & Mathieu Blom Les 1: 5 september 2011
Jo van den Brand Relativistische kosmologie: 1 december 2014
Nederlandse Organisatie voor Wetenschappelijk Onderzoek Alles en Niks VAN DE OERKNAL TOT HIGGS Niels Tuning Nieuwe Meer 26 okt 2014.
Het Quantum Universum (Samenvatting)
Jo van den Brand HOVO: 13 november 2014
Algemene relativiteitstheorie
Jo van den Brand HOVO: 4 december 2014
Samenvatting Conceptversie.
Jo van den Brand HOVO: 27 november 2014
FEW Cursus Gravitatie en kosmologie
Jo van den Brand & Joris van Heijningen Speciale relativiteitstheorie: 6 oktober 2015 Gravitatie en kosmologie FEW Cursus Copyright (C) Vrije Universiteit.
Jo van den Brand & Joris van Heijningen ART: 3 November 2015
De grens van het waarneembare heelal Space Class Sonnenborgh 5 oct 2010 John Heise, Universiteit Utrecht SRON-Ruimteonderzoek Nederland.
Jo van den Brand & Joris van Heijningen Sferische oplossingen: 10 November 2015 Gravitatie en kosmologie FEW cursus Copyright (C) Vrije Universiteit 2009.
het Multiversum een heelal gevuld met andere werelden
Conceptversie.
PPT ASO 5 4 Ontstaan van het heelal p.57.
Kosmologie Het is maar hoe je het bekijkt... Marcel Haas, Winterkamp 2006.
Jo van den Brand Relativistische kosmologie: 24 november 2014
Thema Zonnestelsel & Heelal Paragraaf 3 Sterren en materie
Vandaag les3 Vorige: inleiding – Big Bang Big bang Heelal als geheel
Energie in het elektrisch veld
Relativiteitstheorie
FEW Cursus Gravitatie en kosmologie
Vorige keer: Hoe weten we dit allemaal? Wordt alles steeds complexer?
In het nieuws. In het nieuws Herhaling vorige les: Hubble kijkt mbv roodverschuiving buiten de Melkweg en ziet expanderend heelal met meerdere andere.
FEW Cursus Gravitatie en kosmologie
Elektrische velden vwo: hoofdstuk 12 (deel 3).
Prof.dr. A. Achterberg, IMAPP
Jo van den Brand HOVO: 6 november 2014
Newtoniaanse Kosmologie College 7: Inflatie
Newtoniaanse Kosmologie College 8: deeltjesfysica en het vroege heelal
Transcript van de presentatie:

Jo van den Brand Les 5: 3 december 2015 Algemene relativiteitstheorie HOVO cursus   Jo van den Brand Les 5: 3 december 2015 Copyright (C) Vrije Universiteit 2015

Copyright (C) Vrije Universiteit 2009 Inhoud Speciale relativiteitstheorie Inertiaalsystemen Bewegende waarnemers Relativiteitsprincipe Ruimtetijd Minkowski ruimtetijd Tensoren Gekromde ruimtetijd Algemene coördinaten Covariante afgeleide Algemene relativiteitstheorie Einsteinvergelijkingen Newton als limiet Toepassingen ART Zwarte gaten Kosmologie Gravitatiestraling Copyright (C) Vrije Universiteit 2009

Relativistische kosmologie Theorie van de oerknal: ontstaan van ruimtetijd, het heelal dijt uit Waarneembaar deel van het heelal valt binnen de lichtkegel van de waarnemer Er zijn grenzen aan het waarneembaar gebied: de deeltjeshorizon In de toekomst ziet hij meer van het heelal Twee stelsels in tegenovergestelde richting en op grote afstand van de waarnemer Stelsels hebben geen tijd gehad om te communiceren Dit is het Big Bang scenario zonder inflatie

Isotropie van heelal ART is voldoende voor beschrijving van Big Bang: sterke en zwakke WW enkel op femtometers sterrenstelsels en andere materie elektrisch neutraal Nachthemel ziet er in elke richting hetzelfde uit op een schaal groter dan 100 Mpc Kosmische microgolf achtergrondstraling (CMBR) T  2.725 K zwarte straler binnen 50 ppm isotroop binnen 10 ppm Voorspeld door Gamow Ontdekt door Penzias en Wilson (1965)

Kosmische microgolf-achtergrondstraling 1989 2001 2009

Isotropie van heelal: CMBR en Planck Temperatuurverdeling in galactische coordinaten Straling van 380.000 jaar >BB daarvoor H-atoom instabiel T-variaties: Sachse-Wolf effect: gravitationele roodverschuiving Conclusies: Planck leeftijd 13.789 ± 0.037 Gjaar diameter > 78 Gly gewone materie: 4.82 ± 0.05% donkere materie: 25.8 ± 0.4% donkere energie: 69.2 ± 1.0% consistent met inflatiemodel H0 = 67.80 ± 0.77 km/s/Mpc eeuwige expansie

Isotropie van heelal: materieverdeling Galaxy Redshift Survey: SDSS > 1 miljoen objecten (sterrenstelsels) In binnengebied: gaten, knopen en draden Op grote schaal isotroop Aanname: aarde neemt geen speciale plaats in Heelal ziet er hetzelfde uit vanuit elke positie Homogeniteit SDDS Kosmologisch principe: combinatie van isotropie en homogeniteit Energie en materie gelijkmatig verdeeld op schaal groter dan 100 Mpc

Materieverdeling: SDSS Zie http://www.sdss.org/

Kosmologisch principe en metriek Metriek die consistent is met KP kent geen voorkeursrichting of voorkeurspositie (dan heeft de energieverdeling dat ook niet) Voorbeeld: Schwarzschildmetriek is isotroop, maar niet homogeen Voorbeeld: Minkowskimetriek is isotroop en homogeen echter oplossing van Einsteinvergelijkingen voor een leeg heelal Voeg tijdafhankelijkheid toe aan Minkowskimetriek (dat is consistent met KP) Schaalfactor a(t) Vlakke Robertson – Walker metriek Voor het lijn-element geldt voor waarnemer die afstanden wil meten (dt = 0) Eindige afstand Coördinatenafstand in CMRF Snelheid waarmee heelal uitdijt

Kosmologische roodverschuiving Lichtstraal volgt een lichtachtig pad (neem aan langs x-richting) Lichtstraal uitgezonden op te (emissie) en ontvangen op to Afgelegde coördinaatafstand R tussen emissie en ontvangst Beschouw zender op grote coördinaatafstand R van ontvanger Zender stuurt 2 pulsen met tijdverschil Ontvanger meet tijdverschil (groter want heelal dijt uit) Coördinaatafstand verandert niet (meebewegend stelsel – comoving frame) met Neem aan en zo klein dat constant Er geldt dus kosmologische roodverschuiving ( )

Wet van Hubble Roodverschuiving in spectra Hubble’s orginele data Standaardkaarsen Cepheid variabelen Supernovae Ia Expansie van het heelal

Wet van Hubble Kosmologische roodverschuiving Voor sterren die niet te ver weg staan (a  constant) geldt (gebruik ) Hubble constante Kosmologische roodverschuiving: heden → z = 0 10 Gyr geleden → z = 1 z = 1 → heelal half zo groot Hubble constante is niet constant!

Friedmannvergelijkingen Wat is de exacte vorm van de functie voor de schaalfactor a(t)? Metriek volgt uit Einsteinvergelijkingen voor correcte energie-impulstensor Tmn Complicatie: tijdafhankelijkheid metriek heeft invloed op Tmn (e.g. ballonmodel en P) Kosmologisch principe: geen plaatsafhankelijkheid perfecte vloeistof Gebruik CMRF Bereken Riccitensor en Riemannscalar voor Robertson-Walker metriek Invullen van Rmn, R en Tmn in Einsteinvergelijkingen Relaties (twee) tussen schaalfactor, druk en energiedichtheid Voor

Oerknal en friedmannvergelijkingen Dichtheid en druk zijn positieve grootheden (voor ons bekende materie en velden) Dan negatief volgens Uitdijingssnelheid neemt af in de tijd Volgens experiment, , dijt heelal nu uit Schaalfactor heeft ooit de waarde nul aangenomen Friedmannvergelijkingen voorspellen alle materie en energie ooit opgesloten in volume V = 0 ruimtetijd is begonnen als singulariteit met oneindige energiedichtheid generieke conclusie voor alle oplossingen van friedmannvergelijkingen Leeftijd van het heelal helling Leeftijd van het heelal < 15 Gjaar

Energiedichtheid in heelal Heelal bestaat uit koude materie: atomen, molekulen, aarde, sterren, donkere materie, etc. straling: fotonen van sterren, fotonen van CMB, neutrino’s, etc. kosmologische constante: donkere energie, vacuum energie, quintessence veld, etc. Voor elk van deze soorten energie en materie geldt dat er een verband tussen energiedichtheid en druk bestaat Toestandsvergelijking volgt uit friedmannvergelijkingen Energiedichtheid: energie gedeeld door fysisch volume Fysisch volume bepaald door Koude materie Hoeveelheid materie constant (= A) en wordt niet omgezet naar andere soorten energie Straling Extra afname t.g.v. kosmologische roodverschuiving evenredig met schaalfactor Kosmologische constante Neemt niet af tijdens uitdijen of krimpen van heelal

Heelal gedomineerd door koude materie Bepaal constante n differentieer 1e FV invullen in 2e FV n = 0, P = 0 Er geldt Hieruit volgt ook direct en

Heelal gedomineerd door straling n = 1/3 en dus Er geldt Hieruit volgt ook direct en Uitdijing van een stralingsgedomineerd heelal gaat sneller

Heelal gedomineerd door L Kosmologische constante Voor normale straling en materie neemt dichtheid af als energie over groter volume wordt uitgesmeerd Eigenschap van ruimtetijd zelf (driekwart van alle energie is van deze vorm!) Friedmannvergelijkingen leveren n = -1 Druk is negatief!!! Er geldt Uitdijing is exponentieel en verloopt steeds sneller

Friedmannvergelijkingen Friedmann – Lemaitre – Robertson – Walker metriek. Er geldt Einsteinvergelijkingen geven friedmannvergelijkingen Zonder kosmologische constante wordt FV - 1 Kritische dichtheid: voor gegeven H de dichtheid waarvoor k = 0 10-26 kg m-3 Dichtheid / kritische dichtheid: 

Kritische dichtheid Beschouw een testdeeltje m en bereken de ontsnappingssnelheid Behoud van energie volgens Newton Beschouw een bolvormig volume van het heelal dat expandeert met Massa binnen dit volume Het deeltje zal net ontsnapping als r de kritische dichtheid is Daarvoor geldt Hetzelfde resultaat vonden we met de algemene relativiteitstheorie Invullen van H0 en G levert Met definitie

Friedmannvergelijkingen Friedmannvergelijking 1 kan herschreven worden Rechts staan enkel constanten. Tijdens expansie neemt dichtheid af (~a3) Sinds Planck era is de ra2 met factor 1060 afgenomen (-1 – 1 ) moet met factor 1060 zijn toegenomen Planck en Sloan Digital Sky Survey stellen 0 op 1 binnen 1% Dan is | -1 - 1 | < 0.01 en tijdens Planck era kleiner dan 10-62 Vlakheidsprobleem: waarom was de initiële dichtheid van het Heelal zo dicht bij de kritische dichtheid? Oplossingen: Anthropisch principe of inflatie (ra2 neemt snel toe in korte tijd)

Evolutie van het heelal Friedmannvergelijking Herschrijven als Er geldt Leeftijd van het heelal

Evolutie van het heelal We vinden: t = t(z) a = a(t) We weten: 1 + z = 1/a De figuur toont enkele voorbeelden

Afstanden in FLRW metriek Meebewegende afstand  Emissie: t1 Nu: t0 Er geldt: Neem aan dat we de absolute helderheid L van een bron kennen (standaardkaars) In euclidische ruimte geldt voor de waargenomen flux In FLRW ruimte gelden de volgende modificaties: We vinden helderheidsafstand dL

Supernovae Type IA Supernovae Type IA zijn standaardkaarsen

Supernovae Type IA Supernovae Type IA zijn standaardkaarsen Nobelprijs 2011

Standaardmodel van de kosmologie Evolutie heelal voor vlakke FRW model. Aanname: energie gelijk verdeeld over straling, materie en vacuum Conclusies LCDM model

Continuiteitsvergelijking Beschouw klein “vloeistofelement” Massastroom door linkervlak Massastroom door rechtervlak (gebruik Taylor-expansie Combineer alle vlakken Gebruik de divergentie-operator Dit is de continuiteitsvergelijking: als de dichtheid in het element verandert, dan stroomt er vloeistof door de wanden van het element

Vergelijking van Euler P(x) P(x+dx) P(z+dz) P(y) P(z) P(y+dy) Beschouw kracht op een “vloeistofelement” Kracht op linkervlak Druk op rechtervlak (gebruik Taylor-expansie) Schrijf druk als We vinden Tweede wet van Newton Kettingregel Wet van Euler Dit geeft de versnelling van een vloeistofelement door krachten ten gevolge van drukverschillen

Een klassiek heelal Neem aan dat we te maken hebben met een klassiek heelal dat bestaat uit “stof” Stof heeft uniforme dichtheid Het heelal ondergaat uniforme expansie (met c de beginpositie) Dan geldt met Hubble parameter De continuiteitsvergelijking Hieruit volgt Integreren levert In relatie tussen huidige waarde, vinden we De vergelijking van Euler (met F de kracht per massa-eenheid) Met Er geldt Net als friedmannvergelijkingen

Een klassiek heelal Voor klassiek heelal dat bestaat uit “stof” Gebruik We vinden Vermenigvuldig met en integreer integratieconstante Beschouw dit als een vergelijking voor de energie van het heelal Kinetische energie Totale energie: k = -1, 0, of 1 (friedmann) Potentiële energie