havo A Samenvatting Hoofdstuk 4

Slides:



Advertisements
Verwante presentaties
havo A Samenvatting Hoofdstuk 2
Advertisements

Overzicht Sessie 1 Inleiding
Inleiding in de statistiek voor de gedragswetenschappen Met ondersteuning van SPSS Guido Valkeneers.
Klas 2 Hoofdstuk 7 Moderne Wiskunde HAVO/VWO
havo A Samenvatting Hoofdstuk 10
Tabellen & diagrammen Centrummaten & Spreiding
havo A Samenvatting Hoofdstuk 6
havo/vwo D Samenvatting Hoofdstuk 2
Wiskunde A of wiskunde B?.
vwo A/C Samenvatting Hoofdstuk 3
Staafdiagram Strookdiagram
Dynamische tijdbalk Een dynamische tijdbalk geeft een uitvergroot deel van de algemene tijdbalk weer. Hij heet dynamisch omdat hij er voor elke periode.
Regels economie: Geldbedragen ronden wij af op centen. Bijvoorbeeld €2,99 -> dus twee decimalen. Andere aantallen rond je af op één decimaal. Tenzij anders.
Een manier om problemen aan te pakken
Statistiek HC1MBR Statistiek.
Staaf- en cirkeldiagram
Inleiding in de statistiek voor de gedragswetenschappen Met ondersteuning van PASW Guido Valkeneers.
Statistiek Niveua 3 Kerntaak 5 Blz. 81.
Lesplanning Binnenkomst Intro Vragen huiswerk Uitleg docent
havo/vwo D Samenvatting Hoofdstuk 8
havo A Samenvatting Hoofdstuk 8
vwo A/C Samenvatting Hoofdstuk 8
vwo A/C Samenvatting Hoofdstuk 5
vwo B Samenvatting Hoofdstuk 5
vwo C Samenvatting Hoofdstuk 14
Absolute en relatieve veranderingen
Kwadratische vergelijkingen
Steven Verstockt 16 februari 2005
Hoofdstuk 6 – Tabellen en grafieken
Hoofdstuk 11 Kwantitatieve gegevens analyseren Methoden en technieken van onderzoek, 5e editie, Mark Saunders, Philip Lewis, Adrian Thornhill, Marije.
Statistiek voor Historici Hulpvak GB2HVST / G2HV09A Dr. L.J. Touwen College 3.
Statistiek voor Historici Hulpvak GB2HVST / G2HV09A Dr. L.J. Touwen College 4.
AARDRIJKSKUNDE.
Havo D deel 3 Samenvatting Hoofdstuk 11. x 2 y is (recht) evenredig met x De formule heeft de vorm y = ax De tabel is een verhoudingstabel. Bij een k.
havo A Samenvatting Hoofdstuk 3
havo/vwo D Samenvatting Hoofdstuk 4
Samenvatting hoofdstuk 2
Hoofdstuk 3 Assenstelsel.
Statistiekbegrippen en hoe je ze berekent!!
Procenten 3 havo.
TWIN wiskunde.
havo B Samenvatting Hoofdstuk 1
Hoofdstuk 4: Statistiek
Centrummaten en Boxplot
Wiskunde A of wiskunde B?.
Inleiding in de statistiek voor de gedragswetenschappen
Regels voor het vermenigvuldigen
Accountmanagement H3 Statistiek Junior accountmanager.
Toepassingen 5L week 4: ‘Mensen rondom ons’
Assenstelsel tekenen.
Halveringstijd Havo 5 deel 3 Hoofdstuk 10 Opgave 33,34,37.
H4 Statistiek Beelddiagram
Afkomst van vluchtelingen in België November 2015 Vluchtelingen in België november 2015 Freekje, Anna en Nanook.
Absolute aantallen en relatieve aantallen
Cirkeldiagram en sectoren
Deze les hfdst 1 verbanden gegevens verwerken
Hoeveel boterhammen eet elke klas per dag?
Deze les Nabespreken toets Vervolg Verbanden
Rekenen Verbanden les 1: gegevens verwerken Verbanden les 2: gegeven in tabellen.
Rekenen Les 5: rekenen met grafieken, diagrammen en tabellen
Hoofdstuk 6 Rapportage en presentatie verkoopcijfers
2 vmbo-t/havo Samenvatting Hoofdstuk 2
Kwantitatieve onderzoeksresultaten
Hoe maak je een grafiek? Tabellen & Diagrammen.
Onderzoeken 1HV.
Welke diagrammen er zijn
Financieel 2.
3 vmbo-KGT Samenvatting Hoofdstuk 10
Rekenen Les 5: rekenen met grafieken, diagrammen en tabellen
Beschrijvende Statistiek met Grafische rekenmachine 101
Transcript van de presentatie:

havo A Samenvatting Hoofdstuk 4

Staaf- en cirkeldiagram Beschrijvende statistiek : het verzamelen van gegevens het overzichtelijk weergeven van de gegevens in tabellen en grafieken : turftabel frequentietabel staafdiagram cirkeldiagram 4.1

bloedgroep turven frequentie rel.frequentie 12 : 28 x 100 = opgave 2a 10 : 28 x 100 = 2 : 28 x 100 = 4 : 28 x 100 = bloedgroep turven frequentie rel.frequentie O llll llll ll 12 42,9% A llll llll 10 35,7% B ll 2 7,1% AB llll 4 14,3% totale freq. = 28 relatieve frequentie is de frequentie in procenten rel.freq. = x 100% rond relatieve frequenties af op één decimaal frequentie totale freq. 4.1

bij een cirkeldiagram hoort een legenda 6 : 28 x 360 = opgave 2b 11 : 28 x 360 = 6 : 28 x 360 = 5 : 28 x 360 = profiel turven frequentie sectorhoek C&M llll l 6 77° E&M llll llll l 11 141° N&G N&T llll 5 64° totale freq. = 28 profiel sectorhoek = x 360° rond sectorhoeken af op hele getallen frequentie totale freq. bij een cirkeldiagram hoort een legenda 4.1

opgave 2c er zijn 12 jongens × 100% ≈ 42,9% 12 28 er zijn 16 meisjes × 100% ≈ 57,1% 12 28 16 28 - bij een staafdiagram hoort een opschrift en informatie bij de assen - teken de staven even breed en los van elkaar 4.1

Histogram en frequentiepolygoon een histogram is een staafdiagram bij een freqentietabel met kwantitatieve gegevens (waarnemingsgetallen) op de horizontale as de staven liggen tegen elkaar aan een freqentiepolygoon is een lijndiagram waarin de frequenties zijn uitgezet tegen de waarnemingsgetallen het begin- en het eindpunt liggen op de horizontale as als je de relatieve frequenties uitzet tegen de waarnemingsgetallen krijg je een relatieve-frequentiepolygoon 4.1

zakgeld turven frequentie opgave 8a - zijn er bij een statistisch onderzoek veel verschillende aarnemingsgetallen, dan maak je een indeling in klassen geef elke klasse dezelfde breedte zorg voor 5 a 10 klassen zakgeld turven frequentie 5-<10 llll 5 10-<15 llll l 6 15-<20 20-<25 llll ll 7 25-<30 lll 3 30-<35 l 1 4.2

Cumulatieve frequenties de cumulatieve frequentie krijg je door de frequentie van die klasse en de frequenties van de voorgaande klassen bij elkaar opgeteld bij een cumulatieve frequentiepolygoon teken je de cumulatieve frequenties boven de rechtergrenzen van de klassen begin op de horizontale as bij de linkergrens van de eerste klasse verbind de opeenvolgende punten door lijnstukken 4.2

Diagrammen histogram (zie par.2) frequentiepolygoon (zie par.2) steel-bladdiagram (zie par.2) staafdiagram met een staafdiagram kon je in één oogopslag onderzoeksresultaten onderling vergelijken de staven zijn even breed en staan los van elkaar lijndiagram een lijndiagram laat zien hoe een verschijnsel zich in de loop van de tijd heeft ontwikkeld in een lijndiagram zijn de gegevens als punten uitgezet en daarna verbonden door lijnstukjes, tussenliggende punten hebben geen betekenis cirkeldiagram (sectordiagram) brengt de procentuele (relatieve) verdeling in beeld beelddiagram hoeveelheden worden aangegeven met figuurtjes 4.3

Misleiding bij grafische weergave Let bij grafieken op de volgende punten: 1 staat er bij de grafiek een duidelijk opschrift? 2 staat er voldoende informatie bij de assen? 3 begint de verticale as bij 0? is er een scheurlijn gebruikt? 4.3

Centrummaten gemiddelde het gemiddelde van een serie waarnemingsgetallen is de som van die getallen gedeeld door het aantal getallen mediaan eerst de waarnemingsgetallen naar grootte rangschikken bij oneven aantal getallen is de mediaan het middelste getal bij even aantal getallen is de mediaan het gemiddelde van de middelste twee getallen modus de modus is het waarnemingsgetal met de grootste frequentie 4.4

Voordelen en nadelen centrummaten voordeel nadeel modus snel op te schrijven, weinig rekenwerk de enige centrummaat die bij kwalitatieve gegevens te gebruiken is geeft weinig informatie is niet altijd aanwezig een kleine verandering kan een geheel andere modus opleveren mediaan niet gevoelig voor uitschieters weinig rekenwerk alleen de volgorde van de waarnemingsgetallen is van belang, niet de grootte van de waarnemingsgetallen gemiddelde alle gegevens worden gebruikt iedereen kent deze centrummaat gevoelig voor uitschieters 4.4

Hoe teken je een boxplot? 1 bepaal de mediaan 2 bepaal het eerste kwartiel (mediaan van de “1e” helft) en het derde kwartiel (mediaan van de “2e” helft) 3 teken een getallenlijn en zet het kleinste en grootste waarnemingsgetal, de mediaan en de beide kwartielen boven de getallenlijn 4 teken de boxplot 4.4

voorbeeld de volgende score’s zijn gehaald bij een test 23 – 43 – 24 - 34 - 13 - 32 - 44 - 53 - 17 - 28 – 30 – 22 – 19 schrijf de getallen van klein naar groot op 13 – 17 – 19 – 22 – 23 – 24 – 28 – 30 – 32 – 34 – 43 – 44 – 53 teken een getallenlijn kleinste waarnemingsgetal = 13 grootste waarnemingsgetal = 53 mediaan = 28 1e kwartiel (Q1) = (19 + 22) : 2 = 20,5 3e kwartiel (Q3) = (34 + 43) : 2 = 37,5 10 15 20 25 30 35 40 45 50 55 tussen 2 verticale streepjes altijd 25% van de waarnemingsgetallen in de box 50% 4.4

Boxplot mbv de grafische rekenmachine 1 frequentie tabel maken stat  edit  1  L1 (waarnemingsgetallen) L2 (frequentie’s) invullen 2 boxplot berekenen stat  calc  1  1 var stats L1,L2 (L1,+2  2nd  1,2) 3 boxplot tekenen 2nd  stat plot  1  on  type ‘5e’  graph 4.4

relatieve cumulatieve frequentie 100 ∙ De relatieve cumulatieve frequentiepolygoon kun je goed gebruiken om een boxplot te tekenen. 75 ∙ 50 ∙ 0%  kleinste getal = 3 25%  1e kwartiel (Q1) = 10 50%  mediaan = 13 75%  3e kwartiel (Q3) = 20 100%  grootste getal = 24 25 ∙ ∙ 3 5 10 10 13 15 20 20 24 25 boxplot 5 10 15 20 25 4.4

Spreidingsmaten vaak wordt naast een centrummaat een zogenaamde spreidingsmaat berekend om aan te geven hoever de data in een verdeling uitelkaar liggen spreidingsbreedte : verschil tussen het grootste en kleinste getal kwartielafstand : verschil tussen het 1e en 3e kwartiel (Q3 – Q1) 4.4

De standaardafwijking de meest gebruikte spreidingsmaat is de standaardafwijking om de standaardafwijking te berekenen moet je eerst van elk waarnemingsgetal berekenen hoe ver het van het gemiddelde afligt zo krijg je bij elk waarnemingsgetal x de deviatie d d = x – x ( de afwijking van het gemiddelde ) standaardafwijking σ = √gemiddelde van (x – x)2 het berekenen van σ doe je met (TI) 1-Var Stats L1,L2  σx of (Casio) 1VAR  xσn 4.4

Notaties op de GR x : het gemiddelde σ : de standaardafwijking σx : de standaardafwijking (TI) xσn : de standaardafwijking (Casio) n : het totale aantal waarnemingen minX : het kleinste waarnemingsgetal maxX : het grootste waarnemingsgetal Q1 : het eerste kwartiel Q3 : het derde kwartiel Med : de mediaan (het tweede kwartiel) 4.4

De populatie is de totale groep waarop het onderzoek betrekking heeft. Een steekproef is representatief als zij een juiste afspiegeling is van de gehele populatie - de steekproef moet voldoende groot zijn - de steekproef is aselect In een gelote steekproef heeft elk element van de populatie dezelfde kans om in de steekproef te komen. In een gelaagde steekproef komen duidelijk te onderscheiden groepen in dezelfde verhouding voor als in de gehele populatie. Bij een systematische steekproef genereer je één toevalsgetal. de andere steekproefelementen volgen hieruit door met vaste stappen door de gehele populatie te lopen. voor de stapgrootte deel je de populatieomvang door de steekproefomvang. 4.5