Module ribCTH1 Construeren van een Tennishal Week 06

Slides:



Advertisements
Verwante presentaties
SINT LUKAS HOGESCHOOL BRUSSEL
Advertisements

Construeren van een Tennishal Vergeet-mij-nietjes. Week 12
‘SMS’ Studeren met Succes deel 1
28 juni 2009 Paëllanamiddag 1 Paëllanamiddag 28 juni 2009 Voorbereiding vrijdagavond (Loopt automatisch - 7 seconden)
November 2013 Opinieonderzoek Vlaanderen – oktober 2013 Opiniepeiling Vlaanderen uitgevoerd op het iVOXpanel.
Uitgaven aan zorg per financieringsbron / /Hoofdstuk 2 Zorg in perspectief /pagina 1.
Global e-Society Complex België - Regio Vlaanderen e-Regio Provincie Limburg Stad Hasselt Percelen.
Module ribCTH Construeren van een Tennishal Week 7
Ronde (Sport & Spel) Quiz Night !
prNBN D addendum 1 Deel 2: PLT
Les 14 : MODULE 1 Kabels Rekloze kabels
Hogere Wiskunde Complexe getallen college week 6
ribwis1 Toegepaste wiskunde - Goniometrie Lesweek 4
Oefenopgaven februari 2008
Module ribCTH1 Construeren van een Tennishal Week 05
Nooit meer onnodig groen? Luuk Misdom, IT&T
Passie - Verrijzenis Arcabas
vwo A Samenvatting Hoofdstuk 9
vwo B Samenvatting Hoofdstuk 6
De eenheidscirkel y α P x O (1, 0)
De eenheidscirkel y α P x O (1, 0) Speciale driehoeken.
Rekenregels van machten
1 introductie 3'46” …………… normaal hart hond 1'41” ……..
havo B Samenvatting Hoofdstuk 8
Wat levert de tweede pensioenpijler op voor het personeelslid? 1 Enkele simulaties op basis van de weddeschaal B1-B3.
Les 10 : MODULE 1 Snedekrachten
Les 12b : MODULE 1 Snedekrachten (4)
Les 12b : MODULE 1 Snedekrachten (4)
Hoofdstuk 1, 2 en 3 Toegepaste Mechanica deel 1
Les 12 : MODULE 1 Snedekrachten (3)
Les 14 : MODULE 1 Kabels Rekloze kabels
Werken aan Intergenerationele Samenwerking en Expertise.
Afrika: Topo nakijken en leren.
2009 Tevredenheidsenquête Resultaten Opleidingsinstellingen.
Gaapvergelijkingen. Krachtsorde in statisch onbepaalde liggers.
Module ribCTH Construeren van een Tennishal Spantconstructies. Week 14
Meervoudig statisch onbepaalde liggers
Belastingen op daken Herman Ootes.
Construeren van een Tennishal Vergeet-mij-nietjes. Week 13
Module ribCTH Construeren van een Tennishal Evaluatie, 26 juni 2008
ribBMC01c Beginnen met construeren Carport – Lesweek 03
Module ribCTH Construeren van een Tennishal Week 8
ribwis1 Toegepaste wiskunde Lesweek 2
ribwis1 Toegepaste wiskunde Lesweek 01 – Deel B
Module ribCTH1 Construeren van een Tennishal Week 05
Construeren van een Tennishal Vergeet-mij-nietjes. Week 11
ribwis1 Toegepaste wiskunde, ribPWI Lesweek 01
ribwis1 Toegepaste wiskunde – Differentieren Lesweek 7
Construeren van een Tennishal Vergeet-mij-nietjes. Week 10
Toegepaste mechanica voor studenten differentiatie Constructie
Oppervlaktebelasting
ribWBK11t Toegepaste wiskunde Lesweek 02
Toegepaste wiskunde Vergeet-mij-nietjes
Module ribCTH1 Construeren van een Tennishal Week 03
Module ribBMC1 Beginnen met construeren Week 05
Module ribCO2 4z Draagconstructie in Staal, Hout en Beton Week 07
Module ribCTH1 Construeren van een Tennishal Week 02
30 x 40 = 1200 m2 8.1 Omtrek en oppervlakte 40 m 30 m
ECHT ONGELOOFLIJK. Lees alle getallen. langzaam en rij voor rij
17/08/2014 | pag. 1 Fractale en Wavelet Beeldcompressie Les 5.
17/08/2014 | pag. 1 Fractale en Wavelet Beeldcompressie Les 3.
Fractale en Wavelet Beeldcompressie
Fractale en Wavelet Beeldcompressie
De financiële functie: Integrale bedrijfsanalyse©
1 Zie ook identiteit.pdf willen denkenvoelen 5 Zie ook identiteit.pdf.
ZijActief Koningslust
Transcript van de presentatie:

Module ribCTH1 Construeren van een Tennishal Week 06 IBB Module ribCTH1 Construeren van een Tennishal Week 06 Studiejaar 2007 - 2008 Studiepunten 3 ECTS Bouwkunde / Civiele techniek

Buigingstheorie

1e en 2e stelling van het momentenvlak

Zwaartepunten - basisgevallen ½ h 7/10 h 2/3 h h h ½ h 1/3 h 3/10 h 1/3 b 2/3 b 1/4 b 3/4 b ½ b ½ b b b b A = b * h Rechthoek A = ½ *b * h Driehoek A = 1/3 *b * h Ex paraboolvlak

Zwaartepunten - basisgevallen 3/5 h R ½ D 3/4π R h 2/5 h R R 3/8 b 5/8 b D b 2R A = πD2 / 4 Circel A = 2/3 * b * h Half parabool A = πR2 / 2 Half circel

Oppervlakten en zwaartepuntafstanden -M/EI θ = ML / 2EI x-as M/EI lijn 1/3L 2/3L L

Oppervlakten en zwaartepuntafstanden Holle parabool -M/EI θ = ML / 3EI x-as M/EI lijn 1/4L 3/4L L

Oppervlakten en zwaartepuntafstanden Bolle parabool -M/EI θ = 2ML / 3EI x-as M/EI lijn 3/8L 5/8L L

Uitkragende ligger met constant momentverloop Oppervlakte: Opp.(θ1) = M * L 1e stelling φB = φA + θ1 φB = φA + ML/EI. φB = ML/EI 2e stelling ωB = ωA + θ1*a ωB = - M * L * ½ L / EI ωB = - ML2 /2 EI φA = 0 ω A B L θ1 Mmax a = ½ L M-lijn Knikje (θ1) omhoog dan positieve hoek en negatieve zakking

Uitkragende ligger met puntlast op het einde F Mmax = FL θ1 = ½ * F* L * L / EI θ1 = FL2 / 2EI 1e stelling φB = φA - θ1 φB = 0 - θ1 φB = - FL2 / 2 EI 2e stelling ωB = ωA + θ1*a ωB = 0 + θ1*a ωB = θ1*a ωB = ½ * F* L2 * 2/3L / EI ωB = FL3 / 3EI φA = 0 A B ω L Mmax θ1 a = 2/3 L M/EI-lijn Knikje (θ1) beneden dan negatieve hoek en positieve zakking

Uitkragende ligger met gelijkmatig verdeelde belasting Mmax = ½ * qL * L θ1 = 1/3 * ½ qL2 * L / EI θ1 = 1/6 ql3 /EI 1e stelling φB = φA - θ1 φB = 0 - θ1 φB = - 1/6 ql3 / EI 2e stelling ωB = ωA + θ1*a ωB = 0 + θ1*a ωB = θ1*a ωB = 1/6 ql3 /EI * 3/4L ωB = ql4 / 8 EI q A B ω L Mmax θ1 a = 3/4 L M/EI-lijn Knikje (θ1) beneden dan negatieve hoek en positieve zakking

Uitkragende ligger met q- en puntlast F Momentenlijn 1 θ1 = ½ FL2/EI 1e stelling φB1 = - ½ FL2/EI 2e stelling ωB1 = ½ FL2/EI * 2/3 L ωB1 = FL3/3EI Momentenlijn 2 θ2 = 1/3 * 1/2 qL2 * ½ L / EI θ2 = qL3 / 12EI φB2 = - qL3 / 12EI ωB2 = qL3 / 12EI * 7/8 L ωB2 = 7qL4 / 96EI q A B ½ L ωBtot L Mmax 1 θ1 a = 2/3 L Mmax 2 θ2 M/EI-lijn a = 3/4 * ½ L + ½ L = 7/8 L M/EI-lijn

Uitkragende ligger met q- en puntlast F q A B ½ L ωBtot L Mmax 1 φBtot = (- ½ FL2/EI ) - ( qL3 / 48EI )  1e stelling ωBtot = ( FL3/3EI ) + ( 7qL4 / 96EI )  2e stelling M/EI-lijn

Ligger met puntlast op 2 steunpunten ω M = ¼ FL Opp= ¼ FL * ½ L = 1/8 FL2 θ1 = FL2 / 8EI Hoek A en B ongelijk aan nul Zakking in A en B is nul Zakking in het midden ongelijk aan nul ωB = - φA * L – θ1 * ½ L φA = ( - FL2/8EI * 1/2L) / L φA = - FL2/16EI φB = θ1 – φA φB = FL2/16EI φA θ1 ½ L Positieve buiging, onderzijde balk wordt op trek belast. Knikje positief, zakking negatief

Ligger met puntlast op 2 steunpunten ω M = ¼ FL Opp. = ¼ FL * ½ L * ½ = 1/16 FL2 θ2 = FL2/16 EI 2e stelling ωC = - φA * ½ L – θ2 * 1/6 L ωC = - (-FL2/16EI * 1/2 L) - FL2/16EI * 1/6 L ωC = FL2/16EI * 1/2 L - FL2/16EI * 1/6 L ωC = 2FL3/96EI = FL3/48EI A B C φA θ2 ½ L 1/3 * ½ L = 1/6L Zakking in het midden ω = FL3/48EI

Ligger met gelijkmatig verdeelde belasting op 2 steunpunten M = 1/8qL2 Opp.= 2/3 * 1/8qL2 * L = 2/24 qL3 = qL3 / 12 θ1 = qL3 / 12EI 2e stelling ωB = -φA * L – θ1 * 1/2L φA = - θ1 * 1/2L / L = - ½ θ1 φA = - ½ * qL3 / 12 EI = - qL3 / 24EI φA = - ½ * qL3 / 12 EI φA = - qL3 / 24EI φB = θ1 – φA φB = qL3 / 24EI q ω A B L φA θ1 Hoek A en B ongelijk aan nul Zakking in A en B is nul Zakking in het midden ongelijk aan nul

Ligger met gelijkmatig verdeelde belasting op 2 steunpunten q Opp. = 2/3 * 1/8qL2 * 1/2L = ql3 / 24 θ2 = qL3 / 24EI 2e stelling ωC = - (-φA * ½ L) – θ2 * a ωC = qL3/24EI * ½ L – qL3/24EI * 3/8 * 1/2L ωC = qL4/48EI – 3qL4/384EI ωC = 8qL4/384EI – 3qL4/384EI ωC = 5/384 * qL4/EI ω A B L φA θ2 θ1 a = 3/8 * ½ L ½ L Zakking in het midden ω = 5/384 * ql4/EI

Ligger op 2 steunpunten met een moment op het einde C θ1 = ML/2EI 2e stelling ωB = - φA * L – θ1 * 1/3L φA = - ML/2EI * 1/3L / L φA= - ML/6EI φB = ML/2EI – ML/6EI φB = ML/3EI θ2 = 1/2M * ½ L * ½ = ML/8EI ωC = -(φA * ½ L) – θ2 * 1/3 * ½ L ωC = ML2/2EI – ML2/48EI ωC = ML2/16EI A B L φA θ2 θ1 a2 = 1/3 * ½ L a1 = 1/3 * L

Opgave#1 Gevraagd: F=5kN a. Is de buiging negatief of positief ? b. Reactiekrachten c. D-lijn d. M-lijn e. De hoekverandering in A en B f. De zakking in A en B d. De zakkingslijn A B 6 E = 2,1 * 105 N/mm2 Iy = 934 * 104 mm4

Oplossing opgave 1 M = 30 kNm F=5kN Buiging is negatief, onderste vezels worden op druk belast ΣM t.o.v. A = 0 -5 * 6 + M = 0 M = 30 kNm ΣFv = 0 -Fa + 5 = 0 Fa = 5 kN A A B B Fa = 5 kN 6 5 D-lijn + 30 - M-lijn

Oplossing opgave 1 Knikje negatief dan zakking positief M = 30 kNm F=5kN Knikje negatief dan zakking positief M = FL  opp. = ½ FL2 = 90 θ1 = FL2/2EI = 90/EI Hoekverandering in A = 0 φB = 0 – θ1 = - 90/EI EI = 2.1*108 * 934 * 10-8 EI = 1961.4 kN/m2 φB = -90/1961.4 = - 0.0459 rad A B Fa = 5 kN 6 5 D-lijn + 30 - M-lijn θ1 a = 2/3 * 6 = 4

Oplossing opgave 1 Zakking in A is nul ωB = φA + θ1 * a ωB = 90/EI * 4 M = 30 kNm F=5kN Zakking in A is nul ωB = φA + θ1 * a ωB = 90/EI * 4 ωB = 360/EI = 360/1961.4 ωB = 0,184 m = 184 mm A B ωB= 184mm Fa = 5 kN 6 5 D-lijn + 30 - M-lijn θ1 a = 2/3 * 6 = 4

Opgave 2 Gevraagd: a. Is de buiging negatief of positief ? b. Reactiekrachten c. D-lijn d. M-lijn e. De hoekverandering in A en B f. De zakking in A en B d. De zakkingslijn q=5kN/m A B 6 E = 2,1 * 105 N/mm2 Iy = 934 * 104 mm4

Oplossing opgave 2 M = 90 kNm Buiging is negatief, onderste vezels worden op druk belast q=5kN/m ΣM t.o.v. A = 0 -5 * 6 * 3 + M = 0 M = 90 kNm ΣFv = 0 -Fa + 30 = 0 Fa = 30 kN A Fa = 30 kN 6 5 D-lijn + 90 M-lijn - θ1 a = 3/4 * 6 = 4.5

Oplossing opgave 2 Knikje negatief dan zakking positief M = 90 kNm Knikje negatief dan zakking positief M = ½ ql2  opp. = ½ ql2 * l * 1/3 θ1 = ql3/6EI = 180/EI Hoekverandering in A = 0 φB = 0 – θ1 = - 180/EI EI = 2.1*108 * 934 * 10-8 EI = 1961.4 kN/m2 φB = -180/1961.4 = - 0.0918 rad q=5kN/m A Fa = 30 kN 6 5 D-lijn + 90 M-lijn - θ1 a = 3/4 * 6 = 4.5

Oplossing opgave 2 Zakking in A is nul ωB = φA + θ1 * a M = 90 kNm Zakking in A is nul ωB = φA + θ1 * a ωB = 180/EI * 4 ωB = 810/EI = 810/1961.4 ωB = 0,413 m = 413 mm q=5kN/m A ωB= 413mm Fa = 30 kN 6 5 D-lijn + 90 M-lijn - θ1 a = 3/4 * 6 = 4.5

Opgave#3 Gevraagd: F=5kN B A a. Is de buiging negatief of positief ? b. Reactiekrachten c. D-lijn d. M-lijn e. De hoekverandering in A en B f. De zakking in A en B d. De zakkingslijn B A 6 E = 2,1 * 105 N/mm2 Iy = 934 * 104 mm4

Oplossing opgave 3 F=5kN Buiging is positief, onderste vezels worden op trek belast B A Fa = 2.5 kN Fa = 2.5 kN 6 ΣM t.o.v. A = 0 -5 * 3 + Fb * 6 = 0 Fb = 2,5 kN ΣFv = 0 -Fa + 5 – 2,5 = 0 Fa = 2,5 kN M = ¼ FL = 7.5 kNm 2.5 + D-lijn - -2.5 - φA θ1 M-lijn + 7.5 ½ L

Oplossing opgave 3 Knikje positief dan zakking negatief F=5kN Knikje positief dan zakking negatief opp. = ¼ FL * ½ L θ1 = 1/8 FL2/EI = 22.5/EI Zakking in A en B is nul ωB = -φA * L – θ1 * ½ L φA = - FL2/16EI φB = θ1 – φA = FL2/16EI EI = 2.1*108 * 934 * 10-8 EI = 1961.4 kN/m2 -φA = φB = 11.25/1961.4 = 0.0057 rad B A Fa = 2.5 kN 6 2.5 + D-lijn - -2.5 - φA θ2 θ1 M-lijn + 7.5 ½ L

Oplossing opgave 3 ωC = FL3/32EI)– FL3/96EI ωC = FL3/48EI = 22.5/EI F=5kN Knikje positief dan zakking negatief opp. = ¼ FL * ½ L * ½ θ2 = 1/16 FL2/EI = 11.25/EI Zakking in C ωC = -φA * ½ L – θ2 * 1/3 L ωC = - (-FL2/16EI) * ½ L – FL2/16EI * 1/6 L ωC = FL3/32EI)– FL3/96EI ωC = FL3/48EI = 22.5/EI EI = 2.1*108 * 934 * 10-8 EI = 1961.4 kN/m2 ωC = 22.5/1961.4 = 0.0115 m = 115 mm ωC= 115mm B A Fa = 2.5 kN 6 2.5 + D-lijn - -2.5 - φA θ2 θ1 M-lijn + 7.5 ½ L a = 1/3 * ½ L

Opgave 4

Oplossing opgave 4

Oplossing opgave 4

Oplossing opgave 4

Oplossing opgave 4 Deel A - B zakkingslijn A B M= - 10 kNm 6

Oplossing opgave 4

Oplossing opgave 4

Oplossing opgave 4

Oplossing opgave 4 19 KWISPELEFFECT 32

Bijlage 1 Radialen De omtrek van de eenheidscircel = 2 π r = 2 π 1 = 2 π = 6,28 Zo zal op elk punt van de circelomtrek een reel getal tussen 0 en 6,28 zijn afgebeeld. Na een periode van 2π zal het zelfde punt weer worden bereikt, we noemen dit een periodieke functie met een periode van 2π. Een radiaal is de grootte van een circelboog waarvan de lengte gelijk is aan de straal van de circel. In eenheidscircel bevat 2π radialen = 6,28 radialen. Éen radiaal is gelijk aan 360° / 2π = 57,3° = 57° 18’ Ook de middelpuntshoek α die op de boog staat van één radiaal, noemen we een radiaal. De radiaal kunnen we dus beschouwen als een maateenheid voor het meten van circelbogen en hoeken.

Bijlage 2 Graden  Radialen 90°/360° * 2π = 1,57 → 1,57 / π = 0,5 → 1,57 = 0,5π rad = α / 360 * 2π Radialen  Graden 1 ½ π = 4,71 → 4,71 / 2π * 360° = 270° α = rad / 2π * 360°

EINDE Docent: M.J.Roos