aantal gunstige uitkomsten aantal mogelijke uitkomsten

Slides:



Advertisements
Verwante presentaties
De gemiddelde leerling
Advertisements

KWALITEITSZORG november 2012
Voorrangsregels bij rekenen (2)
Bij een herhaald experiment, met telkens dezelfde kans op succes gebruiken we de binomiale kansverdeling Een binomiale kansverdeling wordt gekenmerkt door.
Rekenen met procenten Rekenen met procenten.
‘SMS’ Studeren met Succes deel 1
Standaard-bewerkingen
Kansbomen Veel kansexperimenten bestaan uit 2 of meer experimenten, denk maar aan: - het gooien met 3 dobbelstenen - het gooien met een dobbelsteen en.
NEDERLANDS WOORD BEELD IN & IN Klik met de muis
havo A Samenvatting Hoofdstuk 9
BRIDGE Vervolgcursus Vervolg op starterscursus Bridgeclub Schiedam ‘59 info: Maandagavond: 19: – of
havo A Samenvatting Hoofdstuk 6
November 2013 Opinieonderzoek Vlaanderen – oktober 2013 Opiniepeiling Vlaanderen uitgevoerd op het iVOXpanel.
Uitgaven aan zorg per financieringsbron / /Hoofdstuk 2 Zorg in perspectief /pagina 1.
havo/vwo D Samenvatting Hoofdstuk 2
1 COVER: Selecteer het grijze vlak hiernaast met rechtsklik & kies ‘change picture’ voor een ander beeld of verwijder deze slide & kies in de menubalk.
Global e-Society Complex België - Regio Vlaanderen e-Regio Provincie Limburg Stad Hasselt Percelen.
 Deel 1: Introductie / presentatie  DVD  Presentatie enquête  Ervaringen gemeente  Pauze  Deel 2 Discussie in kleinere groepen  Discussies in lokalen.
Stijgen en dalen constante stijging toenemende stijging
Hoofdstuk 8 Regels Ontdekken Sebnem YAPAR.
vwo A/C Samenvatting Hoofdstuk 6
Herhaling kansrekenen ?!?
Ronde (Sport & Spel) Quiz Night !
Rekenen met procenten Rekenen met procenten.
Regels bij kansrekeningen
aantal gunstige uitkomsten aantal mogelijke uitkomsten
Kb.1 Ik leer op een goede manier optellen en aftrekken
havo A Samenvatting Hoofdstuk 11
Nooit meer onnodig groen? Luuk Misdom, IT&T
BZ voor de Klas 3 juni 2010.
FOD VOLKSGEZONDHEID, VEILIGHEID VAN DE VOEDSELKETEN EN LEEFMILIEU 1 Kwaliteit en Patiëntveiligheid in de Belgische ziekenhuizen anno 2008 Rapportage over.
Elke 7 seconden een nieuw getal
vwo A Samenvatting Hoofdstuk11
vwo A Samenvatting Hoofdstuk 13
vwo C Samenvatting Hoofdstuk 14
Regels voor het vermenigvuldigen
Regels bij kansrekeningen
Regels bij kansrekeningen SomregelHebben de gebeurtenissen G 1 en G 2 geen gemeenschappelijke uitkomsten, dan is P(G 1 of G 2 ) = P(G 1 ) + P(G 2 ). ComplementregelP(gebeurtenis)
Rekenregels van machten
Kansbomen Veel kansexperimenten bestaan uit 2 of meer experimenten, denk maar aan: - het gooien met 3 dobbelstenen - het gooien met een dobbelsteen en.
Voorbeeld a5a · 4b = 20ab b-5a · 4a = -20a 2 c-2a · -6a = 12a 2 d5a · -b · 6c = -30abc e-5b · 3a · -2 = 30ab f-2 · -a = 2a opgave 1 a7a + 8a = 15a b6a.
Lineaire functies Lineaire functie
Regelmaat in getallen … … …
Formules en de GR Met de GR kun je bijzonderheden van formules te weten komen. Eerst plot je de grafiek. Gebruik eventueel de optie ZoomFit (TI) of Auto.
Differentieer regels De afgeleide van een functie f is volgens de limietdefinitie: Meestal bepaal je de afgeleide niet met deze limietdefinitie, maar.
aantal gunstige uitkomsten aantal mogelijke uitkomsten
Differentieer regels De afgeleide van een functie f is volgens de limietdefinitie: Meestal bepaal je de afgeleide niet met deze limietdefinitie, maar.
Regelmaat in getallen (1).
1 het type x² = getal 2 ontbinden in factoren 3 de abc-formule
1 introductie 3'46” …………… normaal hart hond 1'41” ……..
Oefeningen F-toetsen ANOVA.
Wat levert de tweede pensioenpijler op voor het personeelslid? 1 Enkele simulaties op basis van de weddeschaal B1-B3.
Bewegen Hoofdstuk 3 Beweging Ing. J. van de Worp.
Inkomen bij ziekte en arbeidsongeschiktheid
In dit vakje zie je hoeveel je moet betalen. Uit de volgende drie vakjes kan je dan kiezen. Er is er telkens maar eentje juist. Ken je het juiste antwoord,
13 maart 2014 Bodegraven 1. 1Korinthe Want gelijk het lichaam één is en vele leden heeft, en al de leden van het lichaam, hoe vele ook, een lichaam.
Seminarie 1: Pythagoreïsche drietallen
ribwis1 Toegepaste wiskunde – Differentieren Lesweek 7
Een bakje kwark kost € 1,27. Hoeveel kosten vijf bakjes? 5 x € 1,27 = 5 x € 1,00 = € 5,00 5 x € 0,20 = € 1,00 5 x € 0,07 = € 0, € 6,35 Een.
Cijfers Zorg en Gezondheid
Standaard-bewerkingen
Statistiekbegrippen en hoe je ze berekent!!
Hoe gaat dit spel te werk?! Klik op het antwoord dat juist is. Klik op de pijl om door te gaan!
STIMULANS KWALITEITSZORG juni 2014.
Hartelijk welkom bij de Nederlandse Bridge Academie
Gooien met 1 en 2 dobbelstenen
Centrummaten en Boxplot
23 mei 2013 Bodegraven vanaf hoofdstuk 6: hoofdst.1: de wijsheid van de wereld hoofdst.2: de wijsheid van God hoofdst.3: Gods akker en Gods bouwwerk.
Kansverdelingen Kansverdelingen Inleiding In deze presentatie gaan we kijken naar hoe kansen zijn verdeeld. We gaan in op verschillende.
Transcript van de presentatie:

aantal gunstige uitkomsten aantal mogelijke uitkomsten Kansdefinitie van Laplace aantal gunstige uitkomsten aantal mogelijke uitkomsten P(gebeurtenis) = je mag deze regel alleen gebruiken als alle uitkomsten even waarschijnlijk zijn bij een verkeerslicht zijn de uitkomsten rood, oranje en groen niet even waarschijnlijk, want het verkeerslicht staat langer op rood dan op oranje dus P(oranje) is niet gelijk aan ⅓ bij het gooien met een dobbelsteen is elk van de 6 uitkomsten even waarschijnlijk dus P(meer dan 4 ogen) = 2/6 = ⅓ hierbij zijn 5 en 6 ogen gunstig rond kansen af op 3 decimalen, tenzij anders wordt gevraagd 6.1

Kansschaal 6.1

opgave 3 a de som van de ogen 10 is 3 gunstige uitkomsten 36 mogelijke uitkomsten P(som is 10) = 3/36 ≈ 0,083 b som is minstens 8 15 gunstige uitkomsten P(som minst. 8) = 15/36 ≈ 0,417 c rood meer dan geel P(rood meer dan geel) = 15/36 ≈ 0,417 1,1 1,2 1,3 1,4 1,5 1,6 2,1 2,2 2,3 2,4 2,5 2,6 3,1 3,2 3,3 3,4 3,5 3,6 4,1 4,2 4,3 4,4 4,5 4,6 5,1 5,2 5,3 5,4 5,5 5,6 6,1 6,2 6,3 6,4 6,5 6,6

Samengestelde kansexperimenten het gooien met een dobbelsteen is een voorbeeld van een kansexperiment kenmerkend voor een kansexperiment is dat de uitkomst niet van te voren vastligt voorbeelden zijn: het gooien met een dobbelsteen en een geldstuk het gooien met 2 dobbelstenen het gooien met 3 geldstukken het kopen van 3 loten in een loterij het aantal gunstige uitkomsten bij een samengesteld kansexperiment met dobbelstenen of geldstukken krijg je bij: 2 kansexperimenten met een rooster 3 of meer experimenten met systematisch noteren en/of handig tellen 6.1

Samengestelde kansexperimenten heb je met meer dan 2 experimenten te maken, dan bereken je kansen als volgt : bereken het aantal mogelijke uitkomsten tel het aantal gunstige uitkomsten door deze systematisch te noteren en/of handig te tellen deel het aantal gunstige door het aantal mogelijke uitkomsten zo krijg je bij een worp met 3 dobbelstenen en de gebeurtenis ‘som van de ogen is 15’ aantal mogelijke uitkomsten is 6 x 6 x 6 = 216 aantal gunstige uitkomsten is 10, namelijk 555 663 , 636 , 366 654 , 645 , 546 , 564 , 456 , 465 dus P(som is 15) = ≈ 0,046 1 + 3 + 6 10 = 216 216 6.1

v dc 500 50 opgave 12 a de vliegreis wint P(vliegreis) = 1/36 = 0,028 b de troostprijs wint P(troostprijs) = 12/36 = 0,333 c prijswaarde minstens 550 euro P(minstens 550 euro) = 5/36 = 0,139 d niets wint P(niets) = 13/36 = 0,361 v dc 500 50

Empirische en theoretische kansen wet van de grote aantallen door een kansexperiment heel vaak uit te voeren, komt de relatieve frequentie van een gebeurtenis steeds dichter bij de kans op die gebeurtenis te liggen 1 empirische kansen v.b. : P(meisje bij geboorte) en P(punaise met punt omhoog) empirisch betekent ‘op ervaring gegrond’ empirische kansen krijg je door een groot aantal waarnemingen te gebruiken empirische kansen bereken je door relatieve frequenties te gebruiken 2 theoretische kansen bij veel kansexperimenten kun je van te voren zeggen wat de kans op een gebeurtenis is v.b. : P(6 ogen) bij een worp van een dobbelsteen is 1/6 je gebruikt de kansdefinitie van Laplace 3 subjectieve kans hoe groot is de kans dat voor 2010 je sneller loopt dan 9 seconden over de 100m.?  onmogelijk 6.2

opgave 18 aantal fietsers per minuut 5 6 7 8 9 10 frequentie 15 20 4 3 a de telling duurde 15 + 20 + 8 + 10 + 4 + 3 = 60 minuten b totaal = 5×15 + 6×20 + 7×8 + 8×10 + 9×4 + 10×3 = 397 fietsers c P(er passeren 5 per minuut)  empirische kans schatting = 15/60 = 0,25

aantal fietsers per minuut opgave 18 aantal per minuut 5 6 7 8 9 10 frequentie 15 20 4 3 d aantal per minuut 5 6 7 8 9 10 kans 0,25 0,333 0,133 0,167 0,067 0,05 kans e de som van alle kansen is 1 je hebt alle mogelijke uitkomsten 20/60 = 8/60 = 10/60 = 4/60 = 3/60 = 0,40 0,30 0,20 0,10 5 6 7 8 9 10 aantal fietsers per minuut

opgave 19 kans a 0,40 0,30 0,25 0,20 0,20 0,20 0,15 0,15 3/20 = 0,15 2/20 = 0,15 0,10 0,05 1/20 = 0,05 1 2 3 4 5 aantal minuten te laat b P(meer dan 3 minuten te laat) ≈ 0,2 + 0,2 = 0,4 c P(minstens 2 minuten, niet meer dan 4 minuten) ≈ 0,15 + 0,25 + 0,2 = 0,6

Simuleren door een kansexperiment voortdurend te herhalen kun je kansen schatten dat is echter een tijdrovend karwei b.v. : de kans dat bij een vliegtuig de automatische piloot uitvalt dit soort kansexperimenten gaat men simuleren (nabootsen) met de computer door vervolgens relatieve frequenties te berekenen, schat je kansen de grafische rekenmachine heeft opties om toevalsgetallen te genereren 6.2

Simuleren met de GR TI MATH-PRB-menu  randInt met randInt(1,6,10) krijg je 10 gehele toevalsgetallen van 1 t/m 6 Casio OPTN-NUM-menu  Intg en OPTN-PROB-menu  Ran# met Intg(4Ran# + 1) krijg je 1 van de getallen van 1, 2, 3 of 4 6.2

opgave 26 Bij een spel kan Rob per keer € 2 winnen, € 1 winnen, quitte spelen, € 1 verliezen en € 2 verliezen elke mogelijkheid heeft dezelfde kans Rob begint met € 20 Schat m.b.v. een simulatie de kans dat Rob na 10 spelletjes minstens € 25 bezit selecteer de Random generator en kies bij instellingen van -2 tot 2 aantal getallen per experiment 10 vink gemiddelde aan voer het experiment een aantal keren uit en tel hoeveel keer het gemiddelde minstens gelijk is aan 0,5 de relatieve frequentie van deze gebeurtenis geeft een schatting van de gevraagde kans

voorbeeld 1 kruistabel leeftijd 15 16 17 krantenwijk 15 3 3 3 1 19 a P(geen bijbaantje) = ≈ 0,402 b P(ouder dan 15) = ≈ 0,402 c P(krantwijk+16) = ≈ 0,037 d P(Een 16 jarige heeft krant) = ≈ 0,167 e P(Een supermarktwerker is 15) = ≈ 0,625 f P(jonger dan 17 en geen krantenw.) = ≈ 0,731 g P(Een 16 jarige met bijbaan, werkt in supermarkt) = ≈ 0,500 15 16 17 + krantenwijk 15 3 3 3 1 19 supermarkt 10 10 4 2 16 16 3 82 overige 6 1 7 14 3 geen 18 10 5 33 33 18 49 18 18 18 15 15 82 82 82 82 10 16 10 + 4 + 6 + 1 + 18 + 10 49 + 18 4 3 + 4 + 1

voorbeeld 2 kruistabel bloedgroep a A niet A totaal Rh+ x 170 Rh- 30 60 140 200 51 9 er geldt P(Rh + onder de voorwaarden A) = P(Rh+) dus x = x 170 = 60 200 60 · 170 = 51 200 9 b P(bloedgroep A en Rh-) = ≈ 0,045 c P(met Rh+ heeft A) = ≈ 0,3 200 51 170

Kansbomen bij het uitvoeren van 2 of meer kansexperimenten kun je een kansboom gebruiken je gaat als volgt te werk : zet de uitkomsten bij de kansboom bereken de kansen van de uitkomsten die je nodig hebt vermenigvuldig daartoe de kansen die je tegenkomt als je de kansboom doorloopt van START naar de betreffende uitkomst 6.3

Draaiende schijven Bij het draaien van de schijven hoort de volgende kansboom 6.3

Onafhankelijke kansexperimenten we gaan er bij het draaien van de schijven vanuit dat de kansexperimenten onafhankelijk zijn dat betekent dat ze elkaar niet beïnvloeden alleen dan mag je de kansen in de kansboom vermenigvuldigen als de kansen afhankelijk zijn (elkaar beïnvloeden) mag je de kansen in de kansboom niet vermenigvuldigen afhankelijke experimenten komen in dit boek niet voor 6.3

opgave 39 a P(ba,ba,ba) = 2/4 × 1/3 × 1/4 = 2/24 ≈ 0,083 b P(ke,ke,ke) = 1/4 × 1/3 × 1/2 = 1/24 ≈ 0,042 c P(ci,ci,ba) = 1/4 × 1/3 × 1/2 d P(ci,ci,ci) = 1/4 × 1/3 × 0 = 0

opgave 40 a empirische kans b P(soep,vlees,ijs) = 0,6 × 0,5 × 0,8 = 0,24 c P(salade,vegetarisch,pudding) = 0,4 × 0,2 × 0,2 = 0,016 d P(soep,vis,ijs) = 0,6 × 0,3 × 0,8 = 0,144 dus naar verwachting 500 × 0,144 = 72

De somregel als de gebeurtenissen geen gemeenschappelijke uitkomsten hebben dus als de gebeurtenissen elkaar uitsluiten hebben twee gebeurtenissen wel gemeenschappelijke uitkomsten, dan geldt de somregel niet zo is P(som is 4 of product is 4) niet gelijk aan P(som is 4) + P(product is 4) want de gebeurtenissen ‘som is 4’ en ‘product is 4’ hebben de uitkomst  gemeenschappelijk voor elkaar uitsluitende gebeurtenissen G1 en G2 geldt de somregel: P(G1 of G2) = P(G1) + P(G2) 6.4

opgave 46 a P(geen banaan) = P(bbb) = 2/4 × 2/3 × 3/5 = 12/60 = 0,2 b P(2 citroenen en 1 banaan) = P(ccb) + P(cbc) + P(bcc) = 1/4 × 1/3 × 2/5 + 1/4 × 1/3 × 2/5 + 2/4 × 1/3 × 2/5 = 8/60 ≈ 0,133 c P(3 dezelfde) = P(bbb) + P(ccc) + P(kkk) = 2/4 × 1/3 × 2/5 + 1/4 × 1/3 × 2/5 + 1/4 × 1/3 × 1/5 = 7/60 ≈ 0,117 d P(2 keer kersen) = P(kkk) + P(kkk) + P(kkk) = 1/4 × 1/3 × 4/5 + 1/4 × 2/3 × 1/5 + 3/4 × 1/3 × 1/5 = 9/60 = 0,15 e P(1 banaan) = P(bbb) + P(bbb) + P(bbb) = 2/4 × 2/3 × 3/5 + 2/4 × 1/3 × 3/5 + 2/4 × 2/3 × 2/5 = 26/60 ≈ 0,433

3 niet rood van de 5 2 rood van de 5 3 niet rood van de 5 opgave 49 a P(3 rode) = P(r r r) = 2/5 × 2/5 × 2/5 = 0,064 b P(geen rode) = P(r r r) = 3/5 × 3/5 × 3/5 = 0,216 c P(2 rood en 1 blauw) = P(r r b) + P(r b r) + P(b r r) = 3 × 2/5 × 2/5 × 1/5 = 0,096 d P(2 rood) = P(r r r) + P(r r r) + P(r r r) = 3 × 2/5 × 2/5 × 3/5 = 0,288 3 niet rood van de 5 2 rood van de 5 3 niet rood van de 5 2 rood van de 5 1 blauw van de 5 2 rood van de 5

opgave 55 jaarlijks 15% van de Nederlanders op vakantie naar Spanje voor een onderzoek worden willekeurig 10 Nederlanders gevraagd a P(niemand) = 0,8510 ≈ 0,197 b P(precies 2) = × 0,152 × 0,858 ≈ 0,276 In een klas krijgen alle 23 leerlingen de opdracht om willekeurig 10 Nederlanders te ondervragen. c P(precies 2) = 0,276 Dus de verwachting is dat het bij 0,276 × 23 ≈ 6 leerlingen is. 10 2