Dyscalculie: Stagnaties in het leren rekenen

Slides:



Advertisements
Verwante presentaties
Rekenproblemen en Dyscalculie
Advertisements

Handelingsgericht werken en de IB
Rekenen in groep 1 t/m 4 De doorgaande lijn.
Dyscalculie Asli PEHLIVAN.
Rekenproblemen en Dyscalculie
Sociaal emotionele ontwikkeling en groepsgedrag
H1 Basis Rekenvaardigheden
vergelijkingen oplossen
SWV DRONTEN: Onderbouw
Lionel Kole Rekenvraagstukken & Rekenproblemen in Lionel Kole 02/04/2014 beeld.
komt uit het Grieks en Latijn betekent slecht
Rekenproblemen en Dyscalculie
Ronde (Sport & Spel) Quiz Night !
Flexibel rekenonderwijs in groep 3 en 4 Bijeenkomst 3
Kb.1 Ik leer op een goede manier optellen en aftrekken
Thema 1: Hoezo dyslexie? Dyslexie in het VO
Welkom op de informatieavond
Algebra en tellen Subdomein B1: Rekenen en algebra
Dyscalculie of ernstige rekenproblemen?
Presentatie vergelijkingen oplossen Deel 2
Rekenen en Rekenproblemen
ribwis1 Toegepaste wiskunde Lesweek 01 – Deel B
Achtergrond rekenproblemen
Standaard-bewerkingen
Deel 2. Hoofdrekenend aftrekken
Kennis - Intelligentie
Rekenproblemen en Dyscalculie
Rekenproblemen en Dyscalculie
Rekenproblemen en Dyscalculie
Rekenproblemen en Dyscalculie
Vergelijkingen oplossen.
Vakspecifieke onderwijsbehoeften bij rekenen en Wiskunde
Voorrangsregels bij rekenen (1)
ECHT ONGELOOFLIJK. Lees alle getallen. langzaam en rij voor rij
Het werken met portfolio
Hoofdstuk 9 havo KWADRATEN EN LETTERS
Presentatie vergelijkingen oplossen.
Bewerkingen met breuken Les 37.
Fractale en Wavelet Beeldcompressie
De financiële functie: Integrale bedrijfsanalyse©
Kirti Zeijlmans MSc Rijksuniversiteit Groningen Voor meer informatie:
Centrummaten en Boxplot
Wiskunde kan helpen begrijpen hoe de wereld in elkaar zit.
Protocol Ernstige Reken Wiskundeproblemen
1 Zie ook identiteit.pdf willen denkenvoelen 5 Zie ook identiteit.pdf.
Anny cooreman Rekenstoornissen en rekenproblemen in het secundair
Samen succesvol rekenen op de Zilverberg
Getalbegrip versterken, rekenen tot 100
Dyscalculie uit:
Dyscalculie uit: en APS workshop dyscalculie.
Problemen in de interactie en communicatie bij kinderen met een aan autisme verwante stoornis. M. Serra & R.B. Minderaa.
Significante cijfers Wetenschappelijke notatie
Dyscalculie: Stagnaties in het leren rekenen
Presentatie ouderbijeenkomst
Deze les hoofdrekenen les 1 vervolg
Onderzoek rekentoets Vossius Gymnasium
Les 1: Rekenen Zonder rekenmachine
Rekenspecialist bijeenkomst 2
Gehele getallen optellen en aftrekken
Hoofdstuk 1 Tellen. Hoofdstuk 1 Tellen Paragraaf 1.1 Tellen in groepjes.
ERVARINGEN DELEN REKENDREMPELS NEMEN IJSBERGMODELLEN UITWERKEN
Handig rekenen met eigenschappen
Transcript van de presentatie:

Dyscalculie: Stagnaties in het leren rekenen E. Harskamp © Pedagogiek in Beeld Hoofdstuk 22

Rekenstoornissen (een voorbeeld) Susanne eind groep 5 van de basisschool. optelsommetjes over het tiental vaak fout het getalinzicht (welke getal is groter 5 of 8?) en hoe je bewerkingen uitvoert zijn onvoldoende (3 - 0 = 0; 78 -14 = 71) tafels kent ze slecht, ondanks het vele oefenen. Het begrip van het delen is nog absoluut niet aanwezig (24:8 = 21) Suzanne kan verbale informatie vlot verwerken en kan informatie die ze heeft geleerd ook goed ophalen. Alleen bij rekenen wil dit maar niet lukken. © Pedagogiek in Beeld Hoofdstuk 22

Rekenstoornissen: drie groepen In begin basisonderwijs (groep 3) krijgt circa 20% rekenproblemen Drie groepen leerlingen begin groep 3 met verschillende problematiek: IQ Zien tot 4 ontwikkeling en tellen tot 9 Dyscalculie (3%) + - Algehele achterstand (5%) - +/- Onderwijsachterstand (12%) + + © Pedagogiek in Beeld Hoofdstuk 22

Suzanne’s rekenprobleem Het Diagnostic and Statistical Manual of Mental Disorders -vierde editie (DSM-IV)- heeft als criteria voor onderkenning van rekenstoornis van Suzanne: a) de rekenvaardigheid van het kind wijkt duidelijk af van hetgeen verwacht mag worden op grond van haar leeftijd, intelligentie en scholing b) de rekenstoornis verstoort ernstig de schoolvorderingen c) als er sprake is van een zintuiglijke stoornis dan is het rekenprobleem ernstiger: dyscalculie (Dat moet nog worden onderzocht bij Suzanne) © Pedagogiek in Beeld Hoofdstuk 22

4/3/2017 Ontwikkeling van het rekenen ( grove indicatoren ‘normale ontwikkeling’) P © Pedagogiek in Beeld Hoofdstuk 22

Baroody’s rekenonderwerpen voor kleuters met achterstanden Geen oefeningen voor ‘Piaget voorwaarden’ Vergelijken van hoeveelheden Informeel optellen en aftrekken Deel-geheel relaties met hoeveelheden en getallen Verdeelsituaties en breuken (1/2,1/4 etc) ‘Speelse’ didactiek © Pedagogiek in Beeld Hoofdstuk 22

Te bereiken telstrategieën eind groep 2: 4 snoepjes en 3 erbij Alles tellen op vingers Startaantal opzetten op vingers en doortellen Sprongsgewijs tellen 4 en 2 en 1 Handig tellen: 4 en 4 is 8 en dan 1 minder Feitenkennis: 3 en 4 weet ik, is 7 © Pedagogiek in Beeld Hoofdstuk 22

Oefeningen in ‘number sense’ als preventie voor rekenpropblemen in groep 3 getallen op getallenlijn tot 10 en 20 kunnen aanwijzen: van concrete lijn (meetgetallen) naar meer schematische lijn (positie en plaatswaarde getallen) Laten verbaliseren en feedback geven bij het snel en handig springen op de lijn in verschillende spelsituaties Veelvuldig oefenen, ook in spelvorm (springen) © Pedagogiek in Beeld Hoofdstuk 22

Te bereiken telstrategieen in groep 3 Alles op de vingers tellen (12 -6 = eerst 10 en 2 vingers en dan 6 eraf en tellen wat je overhoudt) Doortellen of terugtellen (12 – 6 = eerst 12 en dan 1 eraf met de vingers dubbelsporig tellen. Bij optellen wordt de min-strategie toegepast: 5 + 7 = 7 + 5) Splitsend rekenen (12 – 6 = eerst 2 eraf is 10 en dan 10 – 4 = 6) Handig hoofdrekenen (gebruik van feiten kennis en rekenregels: ( 6 + 6 = 12, dus 12 - 6 = 6 of 10 – 6 = 4 dus is 12 – 6 is 2 meer: 6) Geautomatiseerd (gebruik feitenkennis) © Pedagogiek in Beeld Hoofdstuk 22

Interventie: rekenfeiten voor zwakke rekenaars Ruijssenaars et al. (2004) vermelden verschillende trainingsonderzoeken naar rekenfeiten Training van de minstrategie bij optellen tot 20 effectiever dan het inoefenen van de sommen met antwoorden. Voor aftrekken zijn de resultaten niet zo duidelijk Toch lijkt het oefenen vanuit strategieen de voorkeur te hebben, omdat leerlingen met een strategie vaak tot een goed antwoord komen en ook omdat het gebruik van een strategie direct aan de getallenlijn kan worden gerelateerd, hetgeen inzicht bevordert in de rekenhandelingen © Pedagogiek in Beeld Hoofdstuk 22

Rekenen tot 100: Welke strategie past de leerling toe en wat gaat fout? 34 + 17 = 21 (17 en 1 is 18 etc tot 17 en 4 is 21) 27 + 8 = 34 (bij 7 begonnen) 34 - 23 = 29 (34, eraf 3 en dan eraf 2) 25 - 17 = 12 (2 -1 en 7 – 5) 16 + 16 = 22 (6 en 6 is 12 en 10 is 22) Deze leerling gebruikt verschillende strategieën door elkaar en heeft waarschijnlijk moeite met plaatswaarde. © Pedagogiek in Beeld Hoofdstuk 22

Interventie: rijgstrategie getallenlijnmodel: eerst tienen en dan lossen verwerken in één procedure © Pedagogiek in Beeld Hoofdstuk 22

Interventie: splitsstrategie geldmodel: gescheiden verwerken van tienen en lossen en later verrekenen 34 - 18 = © Pedagogiek in Beeld Hoofdstuk 22

Effectieve interventies op en af tot 100 Instructie in de rijgstrategie het meeste succes oplevert. Instructie in de splitsstrategie kan succes opleveren als de procedure inzichtelijk is en leerlingen weten dat ze tientallen en lossen gescheiden verwerken en later weer moeten verrekenen. Zelfinstructiekaarten zijn een uitstekend hulpmiddel © Pedagogiek in Beeld Hoofdstuk 22

Interventie met tafelstrategieën? Het doortellen is als strategie het meest bekend bij leerlingen, maar ook nogal belastend voor het werkgeheugen. Handiger is te werken vanuit de steunpunten. Van elke tafel weet het kind al snel 2 x … 5 x … en 10 x … Deze steunpunten moet een leerling leren weergeven op de getallenlijn en van daaruit doortellen of terugtellen. De omkeerstrategie erg efficient: 5 x 4 = 4 x 5 (Siegler & Lemaire, 1997) Memoriseren van de tafels kan met hulp van omkeren en multiple choice opgaven van de tafelsommen (zie Ruijssenaars et al, 2003) © Pedagogiek in Beeld Hoofdstuk 22

Toepassingsopgaven oplossen: een cultureel verschil Allochtone leerlingen en andere leerlingen met taalproblemen hebben baat bij vroegtijdige begeleiding in het oplossen van toepassingsopgaven met tekst, plaatje en vraagsteling. De leerlingen moeten worden getraind om a) een nauwkeurige analyse te maken van een probleemsituatie en de juiste gegevens te selecteren, b) een passend oplossingsplan op te stellen c) de verkregen oplossing te controleren. Het gaat hier om metacognitieve vaardigheden die de zelfsturing bij het oplossen van rekenopgaven bevorderen (aanzetten voor interventie onder andere bij Van Lieshout, 2003) . © Pedagogiek in Beeld Hoofdstuk 22