havo A Samenvatting Hoofdstuk 3

Slides:



Advertisements
Verwante presentaties
Gelijkmatige toename en afname
Advertisements

havo B Samenvatting Hoofdstuk 6
havo A Samenvatting Hoofdstuk 10
havo A Samenvatting Hoofdstuk 7
vwo B Samenvatting Hoofdstuk 3
Stijgen en dalen constante stijging toenemende stijging
Samenvatting H29 Parabolen
vwo A/C Samenvatting Hoofdstuk 2
vwo C Samenvatting Hoofdstuk 13
vwo C Samenvatting Hoofdstuk 11
Herleiden (= Haakjes uitwerken)
horizontale lijn a = 0  y = getal
vwo B Samenvatting Hoofdstuk 2
vwo B Samenvatting Hoofdstuk 1
vwo A/C Samenvatting Hoofdstuk 5
vwo A/C Samenvatting Hoofdstuk 7
vwo A Samenvatting Hoofdstuk10
vwo B Samenvatting Hoofdstuk 7
vwo A Samenvatting Hoofdstuk 12
vwo A Samenvatting Hoofdstuk 16
vwo A Samenvatting Hoofdstuk 14
De grafiek van een lineair verband is ALTIJD een rechte lijn.
De grafiek van een machtsfunctie
Lineaire functies y is een lineaire functie van x betekent y = ax + b
machtsfuncties n even n oneven y y y y a > 0 a < 0 a > 0
Kwadratische vergelijkingen
∙ ∙ f(x) = axn is een machtsfunctie O n even n oneven y y y y a > 0
De grafiek van een lineaire formule is ALTIJD een rechte lijn. algemene vergelijking : y = ax + b a =hellingsgetal of richtingscoëfficient altijd 1 naar.
Multiplechoise toets voor havo 4 H2 & H3 Na een poosje komt er een tijdbalk in beeld. Als deze bij het paarse vakje aangekomen is heb je nog maar 1 a.
Lineaire functies Lineaire functie
De grafiek van een lineair verband is ALTIJD een rechte lijn.
Formules en de GR Met de GR kun je bijzonderheden van formules te weten komen. Eerst plot je de grafiek. Gebruik eventueel de optie ZoomFit (TI) of Auto.
De grafiek van een lineair verband is ALTIJD een rechte lijn.
Differentieer regels De afgeleide van een functie f is volgens de limietdefinitie: Meestal bepaal je de afgeleide niet met deze limietdefinitie, maar.
Asymptoot is een lijn waar de grafiek op den duur mee samenvalt.
Lineaire vergelijkingen
Differentieer regels De afgeleide van een functie f is volgens de limietdefinitie: Meestal bepaal je de afgeleide niet met deze limietdefinitie, maar.
1 het type x² = getal 2 ontbinden in factoren 3 de abc-formule
havo B Samenvatting Hoofdstuk 5
Van de eerste graad in één onbekende
ribwis1 Toegepaste wiskunde – Exponentiele functies Lesweek 5
Havo D deel 3 Samenvatting Hoofdstuk 11. x 2 y is (recht) evenredig met x De formule heeft de vorm y = ax De tabel is een verhoudingstabel. Bij een k.
Havo B Samenvatting Hoofdstuk 4. Interval a-8 ≤ x < 3 [ -8, 3 › b4 < x ≤ 4½ ‹ 4, 4½ ] c5,1 ≤ x ≤ 7,3 [ 5,1 ; 7,3 ] d3 < x ≤ π ‹ 3, π ] -83 l l ○● 44½4½.
havo B Samenvatting Hoofdstuk 9
Vwo C Samenvatting Hoofdstuk 15. Formules en de GR Met de GR kun je bijzonderheden van formules te weten komen. Eerst plot je de grafiek. Gebruik eventueel.
havo B 5.1 Stelsels vergelijkingen
Lineaire formules Voorbeelden “non”-voorbeelden.
H2 Lineaire Verbanden.
Lineaire Verbanden Hoofdstuk 3.
havo B Samenvatting Hoofdstuk 1
Vergelijkingen oplossen
Verbanden JTC’07.
Regels voor het vermenigvuldigen
Functies, vergelijkingen, ongelijkheden
havo B Samenvatting Hoofdstuk 3
Snijpunt bepalen. Lijn p en lijn q snijden elkaar. Wat zijn de coördinaten van het snijpunt ?
Hoofdstuk 3 Lineaire formules en vergelijkingen
Grafiek van lineaire formule
havo A Samenvatting Hoofdstuk 10
De grafiek van een lineair verband is ALTIJD een rechte lijn.
G8 2 Vergelijkingen met breuken oplossen M A R T X I © André Snijers W
3 vmbo-KGT Samenvatting Hoofdstuk 10
havo B Samenvatting Hoofdstuk 1
havo B Samenvatting Hoofdstuk 3
Voorkennis Wiskunde Les 7 Hoofdstuk 2/3: §2.5, 3.1 en 3.2.
Vergelijkingen van de vorm x + a = b oplossen
Vergelijkingen van de vorm ax + b = c oplossen
Vergelijkingen van de vorm x + a = b oplossen
Vergelijkingen van de vorm ax = b oplossen
Vergelijkingen van de vorm ax = b oplossen
Transcript van de presentatie:

havo A Samenvatting Hoofdstuk 3

De grafiek van een lineair verband is ALTIJD een rechte lijn. algemene vergelijking : y = ax + b a = hellingsgetal of richtingscoëfficient altijd 1 naar rechts a omhoog b = “begingetal” of snijpunt met de verticale as 3.1

Teken de grafiek van m: y = ¾x - 2 voor een rechte lijn heb je maar 2 punten nodig 1) gebruik het snijpunt met de verticale as en de r.c. y 2 teken de rechte lijn · 1 1 2 3 4 5 snijpunt (0,-2) x 3 -1 r.c. = ¾ · -2 4 -3 noemer altijd naar rechts teller naar boven of beneden 3.1

· · x 4 y -2 1 Teken de grafiek van m: y = ¾x - 2 y 2 1 1 2 3 4 5 x -1 voor een rechte lijn heb je maar 2 punten nodig 2) maak een tabel met twee coordinaten y 2 · x 4 1 y -2 1 1 2 3 4 5 x teken de grafiek m.b.v. de tabel -1 · -2 -3 3.1

Formules van lijnen Bij het opstellen van een lineaire formule kunnen de volgende situaties voorkomen : 1 de formule volgt uit de tekst 2 uit de grafiek zijn het snijpunt met de verticale as en de r.c. af te lezen 3 een punt en de r.c. zijn gegeven 4 twee punten zijn gegeven 3.1

Evenredige grootheden y is evenredig met x y als je x met k vermenigvuldigt, moet je y ook met k vermenigvuldigen de bijbehorende tabel is een verhoudingstabel de bijbehorende grafiek is een rechte lijn door de oorsprong de bijbehorende formule is van de vorm y = ax y = ax x 3.1

Richtingscoëfficiënt berekenen y rechts ∆x · B omhoog ∆y yB yB – yA = ∆y dus r.c. = ∆y : ∆x ∆y · A yA ∆x xA xB x xB – xA = ∆x 3.2

· · rechts ∆x 4 omhoog ∆y -3 voorbeeld y A 4 B 1 1 5 x Gegeven zijn de punten A(1, 4) en B(5, 1). Stel de formule op van de lijn m door de punten A en B. y · 4 A 4 yB – yA = 1 - 4 xB – xA = 5 - 1 rechts ∆x 4 -3 omhoog ∆y -3 · r.c. = ∆y : ∆x rc = -3/4 = -¾ y = ax + b y = -¾x + b door A(1, 4) 4 = -¾ × 1 + b 4 = -¾ + b 4¾ = b  b = 4¾ m : y = -¾x + 4¾ B 1 1 5 x Staan er bij de assen andere letters dan gebruik je deze letters in de formule, de manier blijft hetzelfde. 3.2

Bij het werken met wiskundige modellen moet je voortdurend rekening houden met de verschillende elementen uit het schema modelvorming praktisch probleem met gegevens en tabellen wiskundig model pas het model toe stel het model bij voorspellingen en conclusies gegevens en tabellen controle 3.2

opgave 36 a gedeelte I (0, 500) en (1000, 1200) a = 700 : 1000 = 0,7 K = 0,7q + b door (0, 500) K = 0,7q + 500 b gedeelte II (1000, 1200) en (3000, 1600) a = 400 : 2000 = 0,2 K = 0,2q + b door (1000, 1200) K = 0,2q + 1000 b = 500 ∆K = 1600 – 1200 = 400 b = 1000 ∆q = 3000 – 1000 = 2000 ∆K = 1200 – 500 = 700 ∆q = 1000 – 0 = 1000 3.2

Grafisch-numeriek oplossen Los de vergelijking 4a + 5 = 5a – 2 grafisch-numeriek op. stap 1 : voer in y1 = 4x + 5 en y2 = 5x – 2 stap 2 : plot de grafieken stap 3 : bereken de x-coördinaat van het snijpunt met de optie intersect je vindt x = 7 stap 4 : de oplossing is a = 7 · · 20 10 · · 2 4 7 3.3

als 5a naar links gaat krijg je -5a Algebraïsch oplossen werkschema : lineaire vergelijkingen algebraïsch oplossen 1 staan er haakjes ? werk ze weg. 2 breng alle termen met x naar het linkerlid, de rest naar het rechterlid 3 herleid beide leden en deel door het getal dat voor de x staat 4a + 5 = 5a - 2 4a – 5a = -2 - 5 -a = -7 a = 7 5a naar links brengen en 5 naar rechts herleid linker- en rechterlid deel door het getal dat voor a staat als 5a naar links gaat krijg je -5a 3.3

· · · · · Ongelijkheden oplossen 20 10 2 4 7 Los de vergelijking 4a + 5 < 5a – 2 grafisch-numeriek op. stap 1: voer in y1 = 4x + 5 en y2 = 5x – 2 stap 2: plot de grafieken stap 3: bereken de x-coördinaat van het snijpunt met de optie intersect je vindt x = 7 stap 4: kijk waar de grafiek van y1 onder de grafiek van y2 ligt stap 5: de oplossing is a > 7 · Lees het antwoord af op de x-as f(x) < g(x) wanneer ligt de grafiek van f onder die van g. · · 20 10 · · 2 4 7 3.3

· · Interpoleren en extrapoleren 800 K 600 400 200 n 5 10 15 20 interpoleren : schatten van een tussenliggende waarde extrapoleren : schatten van een waarde die buiten de gegevens ligt grafisch interpoleren of extrapoleren : schatting aan de hand van een grafiek 800 · 700 K grafisch extrapoleren 600 · 480 400 grafisch interpoleren 200 n 5 10 12,5 15 20 25 3.4

· · · Lineair interpoleren y 16 12 8 4 x 2 4 6 8 vb. Geef door lineair interpoleren een schatting van y bij x = 6. y x 2 8 y 4 12 16 · 12 · ∆x 6 4 ∆y 8 9,3 ∆y = 8 8 ∆y = ? · ∆x = 4 4 ∆y = 4 × 8 : 6 ∆y = 5,3 de schatting van y is y = 4 + 5,3 = 9,3 ∆x = 6 x 2 4 6 8 3.4

· · · · Horizontale en verticale lijnen y 4 3 2 1 1 2 3 4 x de lijn y = 3 is de horizontale lijn door het punt (0, 3) alle punten op deze lijn hebben de y-coördinaat 3 de lijn x = 4 is de verticale lijn door het punt (4, 0) alle punten op deze lijn hebben de x-coördinaat 4 4 · · 3 · 2 1 · 1 2 3 4 x 3.4