Help! Statistiek! Doorlopende serie laagdrempelige lezingen, voor iedereen vrij toegankelijk. Doel: Informeren over statistiek in klinisch onderzoek. Tijd: Derde.

Slides:



Advertisements
Verwante presentaties
Help! Statistiek! Doorlopende serie laagdrempelige lezingen,
Advertisements

Statistische uitspraken over onbekende populatiegemiddelden
Bij een herhaald experiment, met telkens dezelfde kans op succes gebruiken we de binomiale kansverdeling Een binomiale kansverdeling wordt gekenmerkt door.
‘SMS’ Studeren met Succes deel 1
Toetsen van verschillen tussen twee of meer groepen
Help! Statistiek! Doorlopende serie laagdrempelige lezingen, voor iedereen vrij toegankelijk. Doel: Informeren over statistiek in klinisch onderzoek. Tijd: Derde.
November 2013 Opinieonderzoek Vlaanderen – oktober 2013 Opiniepeiling Vlaanderen uitgevoerd op het iVOXpanel.
Uitgaven aan zorg per financieringsbron / /Hoofdstuk 2 Zorg in perspectief /pagina 1.
Global e-Society Complex België - Regio Vlaanderen e-Regio Provincie Limburg Stad Hasselt Percelen.
Ronde (Sport & Spel) Quiz Night !
Help! Statistiek! Doorlopende serie laagdrempelige lezingen, voor iedereen vrij toegankelijk. Doel: Informeren over statistiek in klinisch onderzoek. Tijd: Derde.
Het vergelijken van twee populatiegemiddelden: Student’s t-toets
Help! Statistiek! Doorlopende serie laagdrempelige lezingen,
Hogere Wiskunde Complexe getallen college week 6
Kb.1 Ik leer op een goede manier optellen en aftrekken
CFRD Harold de Valk Ferdinand Teding van Berkhout
Hok Kwan Kan Primary supervisor: dr. Katrien Antonio
© GfK 2012 | Title of presentation | DD. Month
Beschrijvende en inferentiële statistiek
Nooit meer onnodig groen? Luuk Misdom, IT&T
P-waarde versus betrouwbaarheidsinterval
FOD VOLKSGEZONDHEID, VEILIGHEID VAN DE VOEDSELKETEN EN LEEFMILIEU 1 Kwaliteit en Patiëntveiligheid in de Belgische ziekenhuizen anno 2008 Rapportage over.
Meisjes en wiskunde (Waarom) is wiskunde moeilijk?
vwo A Samenvatting Hoofdstuk 13
vwo A Samenvatting Hoofdstuk 15
vwo C Samenvatting Hoofdstuk 14
Rekenregels voor wortels
Regelmaat in getallen … … …
Differentieer regels De afgeleide van een functie f is volgens de limietdefinitie: Meestal bepaal je de afgeleide niet met deze limietdefinitie, maar.
Centrummaten gemiddelde
Differentieer regels De afgeleide van een functie f is volgens de limietdefinitie: Meestal bepaal je de afgeleide niet met deze limietdefinitie, maar.
Regelmaat in getallen (1).
1 introductie 3'46” …………… normaal hart hond 1'41” ……..
Oefeningen F-toetsen ANOVA.
Schatter voor covariantie
Metingen met spreiding
Eenzijdige Betrouwbaarheidsgrens
Continue kansverdelingen
Deze les wordt verzorgd door de Kansrekening en statistiekgroep Faculteit W&I TU/e.
Help! Statistiek! Doorlopende serie laagdrempelige lezingen, voor iedereen vrij toegankelijk. Doel: Informeren over statistiek in klinisch onderzoek. Tijd: Derde.
Help! Statistiek! Doorlopende serie laagdrempelige lezingen, voor iedereen vrij toegankelijk. Doel: Informeren over statistiek in klinisch onderzoek. Tijd: Derde.
Help! Statistiek! Doorlopende serie laagdrempelige lezingen, voor iedereen vrij toegankelijk. Doel: Informeren over statistiek in klinisch onderzoek. Tijd: Derde.
Help! Statistiek! Doorlopende serie laagdrempelige lezingen,
Help! Statistiek! Doel:Informeren over statistiek in klinisch onderzoek. Tijd:Derde woensdag in de maand, uur 16 april : Hoe interpreteren we toetsresultaten?
Een fundamentele inleiding in de inductieve statistiek
Help! Statistiek! Doorlopende serie laagdrempelige lezingen, voor iedereen vrij toegankelijk. Doel: Informeren over statistiek in klinisch onderzoek. Tijd: Derde.
Wat levert de tweede pensioenpijler op voor het personeelslid? 1 Enkele simulaties op basis van de weddeschaal B1-B3.
Populatiegemiddelden: recap
13 maart 2014 Bodegraven 1. 1Korinthe Want gelijk het lichaam één is en vele leden heeft, en al de leden van het lichaam, hoe vele ook, een lichaam.
Methodologie & Statistiek I Toetsen van proporties 7.1.
Methodologie & Statistiek I Principes van statistisch toetsen 5.1.
Evaluatie ECTS- en DS-label aanvragen Procedure/ beslissing nieuwe oproep labelaanvragen meegedeeld aan de Nationale Agentschappen.
ribwis1 Toegepaste wiskunde Lesweek 01 – Deel B
ribwis1 Toegepaste wiskunde, ribPWI Lesweek 01
ribwis1 Toegepaste wiskunde – Differentieren Lesweek 7
Statistiek voor Dataverwerking
havo/vwo D Samenvatting Hoofdstuk 4
EFS Seminar Discriminatie van pensioen- en beleggingsfondsen
Statistiekbegrippen en hoe je ze berekent!!
Eerst even wat uitleg. Klik op het juiste antwoord als je het weet.
1 van 8 Bernoulli-stochasten & Binomiale stochasten © CI 2003.
Ton Lenssen Fysiotherapeut/onderzoeker Afdeling fysiotherapie azM
CENTRAAL KERKBESTUUR GENT STAD
13 november 2014 Bodegraven 1. 2 de vorige keer: 1Kor.15:29-34 indien er geen doden opgewekt worden...  vs 29: waarom dopen?  vs.30-32: waarom doodsgevaren.
1 Week /03/ is gestart in mineur De voorspellingen van alle groten der aarden dat de beurzen zouden stijgen is omgekeerd uitgedraaid.
Bayes, Bias en Boerenbedrog. Diagnostiek Diagnostiek Trial-interpretatie Trial-interpretatie.
Help! Statistiek! Doorlopende serie laagdrempelige lezingen, voor iedereen vrij toegankelijk. Doel: Informeren over statistiek in klinisch onderzoek. Tijd: Derde.
Toetsen van verschillen tussen twee of meer groepen
Transcript van de presentatie:

Help! Statistiek! Doorlopende serie laagdrempelige lezingen, voor iedereen vrij toegankelijk. Doel: Informeren over statistiek in klinisch onderzoek. Tijd: Derde woensdag in de maand, 12-13 uur 17 september Bayesiaanse statistiek 15 oktober Statistische software: van SPSS naar R 19 november Robuuste statistiek Sprekers: Vaclav Fidler, Hans Burgerhof, Wendy Post DG Epidemiologie www.EpidemiologyGroningen.nl

Programma Wie was Bayes? Wat is Bayesiaanse statistiek? Wat zijn de verschillen met de klassieke (frequentistische) statistiek? Eenvoudig voorbeeld Voorbeeld van een Bayesiaanse analyse uit de medische literatuur Voor- en nadelen van Bayesiaanse statistiek literatuurverwijzingen

Thomas Bayes (1702 – 1761) Stelling van Bayes: Conditionele kans (toepassing o.a. bij diagnostische tests) Stelling van Bayes: Vanaf ± 1920 “Bayesiaanse statistiek” gebezigd door o.a. Ramsey, De Finetti, Savage, Jeffreys

Bayesiaanse statistiek … Beschouwt de onbekende parameter(s) als kansvariabele(n) Stelt een a priori kansverdeling op betreffende de onbekende parameter(s) Bepaalt de likelihoodfunctie van de parameter(s), gegeven de data Berekent de a posteriori kansverdeling met behulp van de stelling van Bayes Trekt conclusies met behulp van deze a posteriori verdeling over de parameter(s) 80 % kans dat µ tussen 20 en 60 ligt Volgens de H0 is µ = 40 frequentist Bayesiaan

Een klassieke (frequentistische) analyse Er bestaat een geneesmiddel voor aandoening A waarvan bekend is dat deze in 30 % van de gevallen een positief effect heeft (binnen twee weken) We hebben een nieuw middel en verwachten dat deze in 50 % van de gevallen binnen twee weken een positief effect heeft H0 en alternatief (H0: π = 0,3 tegen H1: π > 0,3) Poweranalyse ( n = 50) Toets (Binomiaal, normale benadering) (95%) betrouwbaarheidsinterval Kritiek gebied P-waarde

Vervolg klassieke statistiek In ons onderzoek vinden we bij de 50 personen die met het nieuwe middel behandeld zijn 23 “successen” binnen twee weken 95 % BI? Conclusie naar aanleiding van de toets?

Vervolg klassieke statistiek Puntschatter voor π: 23/50 = 0,46 95 % BI voor π: [ 0,32 ; 0,60 ] Interpretatie? Als we deze procedure vaak zouden herhalen, zal de onbekende π in ongeveer 95 % van de gevallen in het geschatte interval liggen Het is in de klassieke statistiek onjuist om te spreken over “de kans dat π in het interval ligt”. De parameter π is geen kansvariabele! Vandaar “frequentisten” Bayesianen vatten parameters wel op als kansvariabelen

De kansverdeling van het aantal successen X als H0 waar is (π = 0,3) De Toets De kansverdeling van het aantal successen X als H0 waar is (π = 0,3) Kritiek van de Bayesiaan: Waarom kansen bepalen op gebeurtenissen die niet hebben plaatsgevonden? Waarom is α = 0,05? Wat als het een eenmalige gebeurtenis betreft? 23 Eénzijdige P-waarde: P(X ≥ 23) = 0,0123 wordt vergeleken met α (meestal 0,05) H0: π = 0,3 wordt verworpen

Aangaande de P-waarde: Jeffreys (1961): “What the use of P implies, therefore, is that a hypothesis that may be true may be rejected because it has not predicted observable results that have not occured”

Bayesiaanse analyse: de a priori verdeling De a priori verdeling geeft kansen op verschillende waarden van de onbekende parameter(s) voordat het experiment heeft plaatsgevonden. De a priori verdeling kan bepaald worden op grond van een pilot, literatuur, meningen van een panel van experts of (subjectieve) ervaringen in het verleden

Eenvoudig voorbeeld Als er slechts twee mogelijkheden voor de succeskans π zijn (0,3 en 0,5) en we hebben geen enkele aanwijzing welke van de twee waarden de juiste is, zouden we de volgende a priori verdeling kunnen nemen: P(π = 0,3) = 0,5 P(π = 0,5) = 0,5 Of: de prior odds = 0,5/0,5 = 1

Likelihood Er worden 50 mensen behandeld, de uitkomst is óf een succes (met kans π) óf een mislukking (met kans 1 – π). De kans op k successen wordt gegeven door de Binomiale kansverdeling:

A posteriori verdeling Succeskans π A priori kans P(data | π) (likelihood) Produkt Prior*likelihood A posteriori kans 0,3 0,5 0,00668 0,00334 0,065 0,09596 0,04798 0,935 som 1 0,05132 Posterior = prior*likelihood/0,05132 p(π |X) = C*p(X |π)*p(π) Stelling van Bayes

A posteriori kansverdeling (1) Of: de posterior odds = 0,935/0,065 = 14,4 Vergelijk het “updaten” van een prevalentie na een diagnostische test

Realistischer voorbeeld Waarschijnlijk kan de succeskans π meer dan twee waarden aannemen Als we totaal geen idee hebben en alle kansen tussen 0 en 1 even waarschijnlijk zijn A priori verdeling = Uniforme verdeling (non-informatieve prior) 1 kans De a posteriori verdeling wordt nu bepaald door de likelihood 1 π Posterior = C*prior*likelihood

A posteriori kansverdeling (2) 95% HDR komt nagenoeg overeen met 95 % BI van de frequentisten (bij een Uniforme prior) 95 % HDR: [0,33 ; 0,60] 95 % kans dat 0,33 < π < 0,60 Gebruik de a posteriori verdeling om “Highest Density Regions” (HDR) te berekenen (HDR = Bayesian CI = credible interval)

A posteriori kansverdeling (3) Als we voorafgaande aan de dataverzameling wel informatie hebben over de onbekende parameter, kunnen we dat verwerken in de a priori verdeling Dit kun je doen door een prior te kiezen uit een specifieke familie van kansverdelingen

Beta-verdelingen Beta(α‚β) kansdichtheid π Voor α = β = 1 krijg je de uniforme verdeling

A priori verdeling: Beta(3,7) Prior: verwachtings- waarde voor π ≈ 0,3 P(π > 0,6) ≈ 0,03 Posterior verdeling van dezelfde familie als de prior: Conjugate prior

De a posteriori kansverdeling Puntschatting voor π: Frequentist: k/n = 23/50 = 0,46 Bayesiaan: (k + α) / (n + α + β) = 26 / 60 = 0,43 In de a priori verdeling gold P(π < 0,3) = 0,54, in de a posteriori verdeling is P(π < 0,3) = 0,02 In de a posteriori verdeling geldt P(0,31 < π < 0,56) ≈ 0,95 Verwachting: 0,43

Na een tweede experiment met 48 successen uit n = 100 Beta (26,34) was de a posteriori van het vorige experiment A priori: Beta(26,34) A posteriori: Beta(74,86) Frequentist op grond van het laatste experiment: 95 % BI = [0,38 ; 0,58] P(0,39 < π < 0,54) = 0,95 Verwachting: 0,46

Voorbeeld van Bayesiaanse analyse uit de medische literatuur Ring en Spiegelhalter in Kidney International Kans op aneurysma bij ADPKD (2007) Bayesiaans random effect model m.b.h.v. MCMC

Voordelen Bayesiaanse statistiek Interpretatie van de a posteriori verdeling (kansverdeling van de parameter(s)) eenvoudiger dan “dubbele ontkenning” van de frequentisten Gebruik a posteriori verdeling voor beslissingen Cumulatieve karakter van kennisvergaring (oude posterior wordt nieuwe prior) Nuttig bij “stopping rules” en subgroepanalyses Generieke aanpak

Nadelen van Bayesiaanse analyses Kritiek mogelijk op keuze van de a priori verdeling Wiskundig meestal ingewikkeld Bestaat een non-informatieve prior? (schaal!) Neem een non-informatieve prior of Laat het effect van verschillende priors zien (sensitiviteitsanalyse) Steeds meer software beschikbaar (o.a. BUGS)

Tot slot … Een Bayesiaan en een frequentist worden beiden ter dood veroordeeld …

Literatuur Gelman e.a.: Bayesian data analysis (Chapman & Hall,1995) Lee: Bayesian Statistics. An introduction. (Arnold, Londen,1989) Iversen: Bayesian statistical inference (Sage 1984) Spiegelhalter e.a.:An introduction to bayesian methods in health technology assessment (BMJ 1999) Gurrin e.a.: Bayesian statistics in medical resaerch: an intuitive alternative to conventional data analysis (Journal of evaluation in clinical practice, 2000) Ring en Spiegelhalter: risk of intracranial aneurysm bleeding in autosomal-dominant polycystic kidney disease (Kidney International, 2007) BUGS: http://www.mrc-bsu.cam.ac.uk/bugs/

Statistische software: van SPSS naar R Volgende keer: Woensdag 15 oktober 2008 Statistische software: van SPSS naar R Same place, same time