vwo A/C Samenvatting Hoofdstuk 5

Slides:



Advertisements
Verwante presentaties
Samenvatting Verbanden.
Advertisements

havo A Samenvatting Hoofdstuk 2
havo B Samenvatting Hoofdstuk 6
Machten © R.Bosma.
havo A Samenvatting Hoofdstuk 10
H1 Basis Rekenvaardigheden
Havo5 WA Extra opgaven.
havo A Samenvatting Hoofdstuk 7
dy dx De afgeleide is de snelheid waarmee y verandert voor x = xA
vwo B Samenvatting Hoofdstuk 3
y is evenredig met x voorbeeld a N x 5 x 3
3 mavo Betekenis van dit percentage bespreken..
vwo A/C Samenvatting Hoofdstuk 2
vwo C Samenvatting Hoofdstuk 13
vwo C Samenvatting Hoofdstuk 11
havo B Samenvatting Hoofdstuk 11
Overzicht van de leerstof
horizontale lijn a = 0  y = getal
vwo B Samenvatting Hoofdstuk 2
vwo B Samenvatting Hoofdstuk 1
vwo A/C Samenvatting Hoofdstuk 7
vwo A Samenvatting Hoofdstuk10
vwo B Samenvatting Hoofdstuk 7
vwo B Samenvatting Hoofdstuk 5
vwo B Samenvatting Hoofdstuk 4
vwo A Samenvatting Hoofdstuk 14
De grafiek van een machtsfunctie
Rekenregels van machten
Lineaire functies y is een lineaire functie van x betekent y = ax + b
machtsfuncties n even n oneven y y y y a > 0 a < 0 a > 0
Wortels x² = 10 x = √10 v x = -√10 kwadrateren is hetzelfde als tot de tweede macht verheffen √10 = 2√10 √10 = 10 √10 ≈ 3,16 (√10)² = 10 daarom heet.
∙ ∙ f(x) = axn is een machtsfunctie O n even n oneven y y y y a > 0
Rekenregels voor wortels
havo A Samenvatting Hoofdstuk 10
Lineaire functies Lineaire functie
Twee soorten groei opgave 6 aN = 9,8 · 1,045 t binvullen t = 6 N = 9,8 · 1,045 6 ≈ 12,8 miljoen. cLos op : 9,8 · 1,045 t = 16 voer in y 1 = 9,8.
De grafiek van een lineair verband is ALTIJD een rechte lijn.
Formules en de GR Met de GR kun je bijzonderheden van formules te weten komen. Eerst plot je de grafiek. Gebruik eventueel de optie ZoomFit (TI) of Auto.
Differentieer regels De afgeleide van een functie f is volgens de limietdefinitie: Meestal bepaal je de afgeleide niet met deze limietdefinitie, maar.
De standaardfunctie f(x) = gx
Asymptoot is een lijn waar de grafiek op den duur mee samenvalt.
Differentieer regels De afgeleide van een functie f is volgens de limietdefinitie: Meestal bepaal je de afgeleide niet met deze limietdefinitie, maar.
1 het type x² = getal 2 ontbinden in factoren 3 de abc-formule
havo B Samenvatting Hoofdstuk 5
ribwis1 Toegepaste wiskunde Lesweek 2
ribwis1 Toegepaste wiskunde – Exponentiele functies Lesweek 5
Havo D deel 3 Samenvatting Hoofdstuk 11. x 2 y is (recht) evenredig met x De formule heeft de vorm y = ax De tabel is een verhoudingstabel. Bij een k.
havo A Samenvatting Hoofdstuk 3
havo B Samenvatting Hoofdstuk 9
havo D deel 3 Samenvatting Hoofdstuk 10
Vwo C Samenvatting Hoofdstuk 15. Formules en de GR Met de GR kun je bijzonderheden van formules te weten komen. Eerst plot je de grafiek. Gebruik eventueel.
Havo B 11.1 Exponentiële groei. Twee soorten groei.
havo B Exponentiële groeiformules
havo B 5.1 Stelsels vergelijkingen
Hoofdstuk 9 havo KWADRATEN EN LETTERS
havo B Samenvatting Hoofdstuk 1
Vergelijkingen oplossen
Functies, vergelijkingen, ongelijkheden
havo B Samenvatting Hoofdstuk 3
havo B Samenvatting Hoofdstuk 7
Halveringstijd Havo 5 deel 3 Hoofdstuk 10 Opgave 33,34,37.
havo A Samenvatting Hoofdstuk 10
De grafiek van een lineair verband is ALTIJD een rechte lijn.
3 vmbo-KGT Samenvatting Hoofdstuk 10
Machten en vierkantswortels van gehele getallen
G3 2 Machten met een gehele exponent en vierkantswortels M A R T X I
Voorkennis Wiskunde Les 3 Appendix §A.5 en A.6.
havo B Samenvatting Hoofdstuk 3
Info 2 Rationale getallen tot een positieve macht verheffen M A R T X
Gehele getallen vermenigvuldigen en delen
Transcript van de presentatie:

vwo A/C Samenvatting Hoofdstuk 5

Wortels x² = 10 x = √10 v x = -√10 kwadrateren is hetzelfde als tot de tweede macht verheffen √10 = 2√10 √10 = 10 √10 ≈ 3,16 (√10)² = 10 daarom heet √10 ook wel de tweedemachtswortel van 10 GR 1 y1 = x2 en y2 = 10 plotten  intersect coördinaten v/h snijpunt 2 optie x√ gebruiken 5.1

Voor het oplossen van de vergelijking xn = p kun je 4 verschillende situaties onderscheiden. 5.1

1 p is positief ( n = oneven ) er is één oplossing x = p = n√p grafiek is puntsymmetrisch in (0, 0) 1,44 5.1

-1,44 2 p is negatief ( n = oneven ) er is één oplossing x = p = n√p 5.1

3 p is positief ( n = even ) er zijn twee oplossingen x = p = n√p v x = -p = - n√p grafiek is lijnsymmetrisch in de y-as x4 = 3 x = 3¼ x ≈ 1,32 v x ≈ -1,32 -1,32 1,32 5.1

4 p is negatief ( n = even ) er zijn geen oplossingen x4 = -3 x = -3¼ Er is geen oplossing 5.1

werkschema bij het oplossen van ongelijkheden 1 schets de grafieken van f en g 2 los de vergelijking f(x) = g(x) op 3 lees uit de schets de oplossingen af los op (exact) x² < 2x + 3 f(x) = x² g(x) = 2x + 3 f(x) = g(x) x² = 2x + 3 x²- 2x – 3 = 0 ( x + 1 )( x - 3 ) = 0 x = -1 v x = 3 aflezen uit de schets -1 < x < 3 y f lees het antwoord af op de x-as f(x) < g(x) wanneer ligt de grafiek van f onder die van g -1 3 x g 5.1

y los op (2 decimalen) x³ - 2x² > 3x – 4 voer in y1 = x³ - 2x² Bij het oplossen van de ongelijkheid f(x) < g(x) waarbij je niet exact te werk hoeft te gaan, mag je de vergelijking f(x) = g(x) grafisch-numeriek oplossen (GR) y los op (2 decimalen) x³ - 2x² > 3x – 4 voer in y1 = x³ - 2x² y2 = 3x - 4 optie intersect x ≈ 1,56 v x = 1 v x ≈ 2,56 aflezen uit de schets -1,56 < x < 1 v x > 2,56 y1 1 -1,56 2,56 x lees het antwoord af op de x-as f(x) > g(x) wanneer ligt de grafiek van f boven die van g y2 5.1

Lineaire groei en exponentiële groei 5.2

Bij de formule N = b · gt onderscheiden we 2 gevallen groeifactoren kleiner dan 0 of gelijk aan 1 hebben geen betekenis g > 1 0 < g < 1 y y 1 1 x x O O 5.2

Groeifactor en groeipercentage Neemt een hoeveelheid per tijdseenheid met een vast percentage toe of af, dan heb je met exponentiële groei te maken. Neemt een bedrag met 250 euro per jaar met 4,5% toe, dan is de groeifactor 1,045. 100% + 4,5% = 104,5%  × 1,045 formule : B = 250 × 1,045t Dus bij een groeifactor van 0,956 is de procentuele afname 100% - 95,6% = 4,4%. We zeggen dat het groeipercentage - 4,4% is. Bij een verandering van p% per tijdseenheid hoort exponentiële groei met groeifactor g = 1 + p/100. Bij een groeifactor g per tijdseenheid hoort een procentuele verandering van p = ( g – 1 ) × 100%. 5.2

Rekenregels van machten a4 = a · a · a · a a2 · a3 = a · a · a · a · a = a5 = = a2 (a2)3 = a2 · a2 · a2 = a6 (ab)3 = ab · ab · ab = a3b3 bij vermenigvuldigen de exponenten optellen a5 a · a · a · a · a a3 a · a · a bij delen trek je de exponenten van elkaar af bij macht van een macht vermenigvuldig je de exponenten bij de macht van een product krijg je een product van machten 5.3

Algemeen ap · aq = ap + q = ap – q (ap)q = apq (ab)p = apbp ap aq 5.3

Negatieve exponenten 4° = 1 a° = 1 (a ≠ 0) 2-1 = ½ 8-1 = ⅛ Verhuist een macht van de teller naar de noemer of omgekeerd, dan verandert de exponent van teken. 4° = 1 a° = 1 (a ≠ 0) 2-1 = ½ 8-1 = ⅛ a-n = (a ≠ 0) de rekenregels voor machten gelden ook bij negatieve exponenten 1 an 5.3

Machten met gebroken exponenten x = √x x = √x 4 = √4 = 2 64 = √64 = 4 algemeen: a = n√a ook geldt: a = √a (a > 0) 3 3 p q q p 5.3

Evenredig als er een getal a bestaat zo, dat P = a · Q dan is P evenredig met Q het getal a heet de evenredigheidsconstante y is evenredig met xn betekent dat er een getal a is met y = a · xn 5.3

Groeiregels omzetten naar een andere tijdseenheid is g de groeifactor per tijdseenheid, dan is de groeifactor per n tijdseenheiden gelijk aan gn bij een groeifactor van 1,5 per uur hoort een groeifactor van 1,524 ≈ 16834,11 per dag en een groeifactor van 1,5¼ ≈ 1,11 per kwartier 1,11  111%  toename per kwartier is 11% het omzetten van groeipercentages naar een andere tijdseenheid gaat via groeifactoren 5.4

Werkschema: herkennen van exponentiële groei bij een tabel 1 bereken voor even lange tijdsintervallen het quotiënt aantal aan het eind van het interval aantal aan het begin van het interval 2 verschillen de quotiënten weinig, dan mag je uitgaan van exponentiële groei 5.4

Verdubbelings- en halveringstijd de verdubbelingstijd bij exponentiële groei is de tijd waarin de hoeveelheid verdubbelt bij groeifactor g vind je de verdubbelingstijd T door de vergelijking gT = 2 op te lossen de halveringstijd is de tijd waarin de hoeveelheid gehalveerd wordt bij groeifactor g bereken je de halveringstijd T door de vergelijking gT = ½ op te lossen 5.4