vwo B Samenvatting Hoofdstuk 1

Slides:



Advertisements
Verwante presentaties
H3 Tweedegraads Verbanden
Advertisements

havo B Samenvatting Hoofdstuk 6
havo A Samenvatting Hoofdstuk 10
vwo B Samenvatting Hoofdstuk 3
Stijgen en dalen constante stijging toenemende stijging
Presentatie Machten,Wortels & Ontbinden Deel 1
Samenvatting H29 Parabolen
Hogere Wiskunde Complexe getallen college week 6
vwo A/C Samenvatting Hoofdstuk 2
vwo D Samenvatting Hoofdstuk 9
vwo C Samenvatting Hoofdstuk 13
vwo C Samenvatting Hoofdstuk 11
Kwadratische verbanden
Herleiden (= Haakjes uitwerken)
horizontale lijn a = 0  y = getal
vwo B Samenvatting Hoofdstuk 2
vwo A/C Samenvatting Hoofdstuk 5
vwo A/C Samenvatting Hoofdstuk 7
vwo A Samenvatting Hoofdstuk10
vwo B Samenvatting Hoofdstuk 7
vwo A Samenvatting Hoofdstuk 14
De grafiek van een lineair verband is ALTIJD een rechte lijn.
De grafiek van een machtsfunctie
machtsfuncties n even n oneven y y y y a > 0 a < 0 a > 0
Kwadratische vergelijkingen
∙ ∙ f(x) = axn is een machtsfunctie O n even n oneven y y y y a > 0
Rekenregels voor wortels
De grafiek van een lineaire formule is ALTIJD een rechte lijn. algemene vergelijking : y = ax + b a =hellingsgetal of richtingscoëfficient altijd 1 naar.
Lineaire functies Lineaire functie
De grafiek van een lineair verband is ALTIJD een rechte lijn.
Formules en de GR Met de GR kun je bijzonderheden van formules te weten komen. Eerst plot je de grafiek. Gebruik eventueel de optie ZoomFit (TI) of Auto.
De grafiek van een lineair verband is ALTIJD een rechte lijn.
Differentieer regels De afgeleide van een functie f is volgens de limietdefinitie: Meestal bepaal je de afgeleide niet met deze limietdefinitie, maar.
Vergelijkingen van de vorm AB = 0, A2 = B2 en AB = AC
Asymptoot is een lijn waar de grafiek op den duur mee samenvalt.
Lineaire vergelijkingen
Differentieer regels De afgeleide van een functie f is volgens de limietdefinitie: Meestal bepaal je de afgeleide niet met deze limietdefinitie, maar.
1 het type x² = getal 2 ontbinden in factoren 3 de abc-formule
Algebraïsch oplossen van kwadratische vergelijkingen
havo B Samenvatting Hoofdstuk 5
Van de eerste graad in één onbekende
ribwis1 Toegepaste wiskunde Lesweek 2
ribwis1 Toegepaste wiskunde Lesweek 01 – Deel B
ribwis1 Toegepaste wiskunde, ribPWI Lesweek 01
havo A Samenvatting Hoofdstuk 3
havo B Samenvatting Hoofdstuk 9
vwo D Samenvatting Hoofdstuk 12
Vwo C Samenvatting Hoofdstuk 15. Formules en de GR Met de GR kun je bijzonderheden van formules te weten komen. Eerst plot je de grafiek. Gebruik eventueel.
havo B 5.1 Stelsels vergelijkingen
–20 4 –2b opgave 20 –160ab · –200b = 8ab · –20 = –20 · 10b = 4 · –5 =
H2 Lineaire Verbanden.
havo B Samenvatting Hoofdstuk 1
Vergelijkingen oplossen
Verbanden JTC’07.
Regels voor het vermenigvuldigen
Functies, vergelijkingen, ongelijkheden
Differentieer regels De afgeleide van een functie f is volgens de limietdefinitie: Meestal bepaal je de afgeleide niet met deze limietdefinitie, maar.
havo B Samenvatting Hoofdstuk 3
Snijpunt bepalen. Lijn p en lijn q snijden elkaar. Wat zijn de coördinaten van het snijpunt ?
Hoofdstuk 3 Lineaire formules en vergelijkingen
Grafiek van lineaire formule
3 vmbo-KGT Samenvatting Hoofdstuk 6
De grafiek van een lineair verband is ALTIJD een rechte lijn.
G8 2 Vergelijkingen met breuken oplossen M A R T X I © André Snijers W
2 vmbo-t/havo Samenvatting Hoofdstuk 1 (vmbo-T)
3 vmbo-KGT Samenvatting Hoofdstuk 10
havo B Samenvatting Hoofdstuk 1
havo B Samenvatting Hoofdstuk 3
Vergelijkingen van de vorm ax + b = c oplossen
Gehele getallen vermenigvuldigen en delen
Transcript van de presentatie:

vwo B Samenvatting Hoofdstuk 1

Algebraïsch oplossen van tweedegraadsvergelijkingen 1 het type x² = getal 2 ontbinden in factoren 3 de abc-formule 1.1

1 x² = getal x = √getal v x = - √getal a x² = positief getal vb.1 x² = 7 x = √7 v x = - √7 vb.2 x² = -16 x = √-16  k.n. heeft dus geen oplossingen vb.3 (x + 5)² = 16 x + 5 = √16 v x + 5 = - √16 x + 5 = 4 v x + 5 = -4 x = 4 – 5 v x = -4 – 5 x = -1 v x = -9 a x² = positief getal 2 oplossingen b x² = 0 x = 0  1 oplossing c x² = negatief getal k.n.  geen oplossing 1.1

2 Ontbind in factoren voorbeeld 1 prod=+15 +1 +15 -1 -15 +3 +5 -3 -3 a maak het rechterlid nul door alle termen naar het linkerlid te brengen b vereenvoudig het linkerlid zo ver mogelijk c ontbind het linkerlid in factoren d A · B = 0  A = 0 v B = 0 voorbeeld 1 x² - 3x = 5x – 15 x² - 3x – 5x + 15 = 0 x² - 8x + 15 = 0 ( x – 3 )( x – 5 ) = 0 x – 3 = 0 v x – 5 = 0 x = 3 v x = 5 ad a prod=+15 opgeteld = -8 ad b +1 +15 ad c product = +15 -1 -15 ad d +3 +5 ad d -3 -3 -5 -5 1.1

3 De abc-formule Bij kwadratische vergelijkingen kun je de oplossing berekenen met de abc – formule als ontbinden in factoren niet lukt. de vergelijking eerst gelijk aan 0 stellen x = - b + √D v x = - b - √D 2a 2a D = b² - 4ac D > 0  2 oplossingen D = 0  1 oplossing D < 0  0 oplossingen 1.1

∙ ∙ ∙ Vergelijkingen met een parameter x x x in de vergelijking -x² + 5x + p = 0 heet p een parameter met behulp van de parameter p worden oneindig veel vergelijkingen genoteerd je onderscheidt 3 situaties : 2 oplossingen, 1 oplossing of geen oplossing y = -x² + 5x – 6¼ x ∙ x de vergelijking -x² + 5x – 4 = 0 heeft 2 oplossingen dus de parabool y = -x² + 5x – 4 snijdt de x-as in 2 punten de vergelijking -x² + 5x – 6¼ = 0 heeft 1 oplossing dus de parabool y = -x² + 5x – 6¼ raakt de x-as de vergelijking -x² + 5x – 8 = 0 heeft geen oplossingen dus de parabool y = -x² + 5x – 8 ligt geheel onder de x-as ∙ ∙ x y = -x² + 5x – 4 y = -x² + 5x – 8 1.1

Wortels x² = 10 x = √10 v x = - √10 kwadrateren is hetzelfde als tot de tweede macht verheffen √10 = 2 √10 √10 = 10 √10 ≈ 3,16 (√10)² = 10 daarom heet √10 ook wel de tweedemachtswortel van 10 GR 1 y1 = x2 en y2 = 10 plotten  intersect coördinaten v/h snijpunt 2 optie x √ gebruiken 1.2

Voor het oplossen van de vergelijking xn = p kun je 4 verschillende situaties onderscheiden. 1.2

grafiek is puntsymmetrisch in (0, 0) 1 p is positief ( n = oneven ) er is één oplossing x = p = n √ p n = oneven grafiek is puntsymmetrisch in (0, 0) x³ = 3 x = 3 x ≈ 1,44 1,44 1.2

2 p is negatief ( n = oneven ) er is één oplossing x = p = n √ p -1,44 1.2

grafiek is lijnsymmetrisch in de y-as 3 p is positief ( n = even ) er zijn twee oplossingen x = p = n √ p v x = -p = - n √ p x4 = 3 x = 3¼ x ≈ 1,32 v x ≈ -1,32 n = even grafiek is lijnsymmetrisch in de y-as -1,32 1,32 1.2

4 p is negatief ( n = even ) er zijn geen oplossingen x4 = -3 x = -3¼ Er is geen oplossing 1.2

Modulusvergelijkingen er zijn 2 getallen op de getallenlijn met afstand 4 tot 0 dat zijn -4 en 4 we zeggen dat de modulus van 4 gelijk is aan 4 en dat de modulus van -4 gelijk is aan 4 notatie : |5| = 5 en |-5| = 5 i.p.v. modulus zeggen we ook wel absolute waarde dus de absolute waarde van -7 is 7 |x| is de absolute waarde ofwel de modulus van x |x| is de afstand van het getal x tot o op de getallenlijn |x| = afstand = 4 afstand = 4 -4 -4 x als x ≥ 0 -x als x < 0 1.2

Wortelvergelijkingen oplossen opgave 33a 2x + √x = 10 √x = 10 – 2x x = (10 – 2x)2 x = 100 – 40x + 4x2 -4x2 + 40x + x – 100 = 0 -4x2 + 41x – 100 = 0 D = (41)2 – 4 · -4 · -100 D = 81 x = x = 6¼ v x = 4 isoleer de wortelvorm kwadrateer het linker- en het rechterlid los de vergelijking op -4 ± √81 -8 controleer of de oplossingen kloppen voldoet niet voldoet 1.3

Substitutie bij wortelvergelijkingen opgave 36a x3 + 30 = 11x √x x3 – 11x √x + 30 = 0 stel x √x = p p2 – 11p + 30 = 0 (p – 6)(p – 5) = 0 p – 6 = 0 v p – 5 = 0 p = 6 v p = 5 x √x = 6 v x √x = 5 x2 · x = 36 v x2 · x = 25 x3 = 36 v x3 = 25 x = 3 √36 v x = 3 √25 -6 - 5 = -11 en -6 · -5 = 30 kwadraat voldoet voldoet 1.3

Gebroken vergelijkingen Regels voor het algebraïsch oplossen van gebroken vergelijkingen = 0 geeft A = 0 = geeft A = C = geeft A = 0 v B = C = geeft AD = BC A B 0 1 = 0 = kan niet een breuk is nul als de teller nul is en de noemer niet A B C B 1 0 A B A C 0 0 A B C D 0 5 controleer of geen noemer nul wordt 1.3

Lineaire vergelijking met twee variabelen algemene vorm ax + by = c grafiek is een rechte lijn vb.1 2y + 3x = 8 om de grafiek te plotten moet je eerst y vrijmaken 2y = -3x + 8 y = -1½x + 4 voer in y1 = -1½x + 4 je kunt de grafiek ook tekenen zonder de formule in te voeren in de GR snijpunt met de y-as is (0, 4) rc = -1½ of je gebruikt de formule 2y + 3x = 8 je maakt een tabel met 2 punten vul bijv. x = 0 en x = 2 in dan krijg je de punten (0, 4) en (2, 1) teken de punten en de lijn y 4 ● ● : 2 -1½ 3 ● 2 1 ● x -1 1 2 3 4 -1 1.4

Stelsels vergelijkingen vb.2 gegeven zijn de lijnen f : 2y + x = 4 en g : y – 3x = -5 het punt (2, 1) is het snijpunt van de lijnen of (2, 1) is de oplossing van 2y + x = 4 als van y – 3x = -5 we zeggen dat (2, 1) de oplossing is van het stelsel 2y + x = 4 y – 3x = -5 y 4 g 3 f 2 1 ● x -1 1 2 3 4 -1 1.4

Algebraïsch oplossen van een stelsel vergelijkingen 2y + x = 4 y – 3x = -5 3 1 stap 1: kan elimineren door optellen? + - stap 2: kan elimineren door aftrekken? 3y – 2x = -1 y + 4x = 9 nee nee stap 3: kan elimineren door eerst te vermenigvuldigen en dan optellen of aftrekken ? x geëlimineerd 6y + 3x = 12 y – 3x = -5 + invullen 7y = 7 y = 1 : 7 y = 1 2y + x = 4 2 · 1 + x = 4 2 + x = 4 x = 2 - 2 maakt niet uit welke vergelijking de oplossing is (2, 1) 1.4

De vergelijking x² = 2x + 3 kun je op 2 manieren oplossen 1 algebraïsch x² = 2x + 3 x² - 2x – 3 = 0 ( x + 1 )( x - 3 ) = 0 x + 1 = 0 v x - 3 = 0 x = -1 v x = 3 prod= -3 +1 +1 -3 -3 -1 +3 1.5

2 grafisch-numeriek (m.b.v. GR) f(x) = 0  nulpunten berekenen optie zero of ROOT 2 grafisch-numeriek (m.b.v. GR) de oplossingen van de vergelijking x² = 2x + 3 zijn de x-coördinaten van de snijpunten van de grafieken van f(x) = x² en g(x) = 2x + 3 voer in y1 = x² en y2 = 2x + 3 optie intersect geeft x = -1 v x = 3 1.5

Grafisch-numeriek y 10 8 6 4 2 -4 -3 -2 -1 1 2 3 4 x -2 y2 -4 -6 x² = 2x + 3 y1 = x² y2 = 2x + 3 optie intersect x = -1 v x = 3 6 4 2 -4 -3 -2 -1 -1 1 2 3 3 4 x -2 y2 -4 -6 1.5