1 Datastructuren Heapsort College 4. 2 Vandaag  Kort: ADT vs Datastructuur  Heaps en Heapsort  Tijd over: ondergrenzen voor sorteren; nog sneller sorteren.

Slides:



Advertisements
Verwante presentaties
‘SMS’ Studeren met Succes deel 1
Advertisements

Paulus' eerste brief aan Korinthe (20) 23 januari 2013 Bodegraven.
NEDERLANDS WOORD BEELD IN & IN Klik met de muis
Beter afspelen.
WAAROM? Onderzoek naar het meest geschikte traject voor de verlenging tot in Sint-Niklaas van het bestaande fietspad naast de Stekense Vaart en de Molenbeek.
BRIDGE Vervolgcursus Vervolg op starterscursus Bridgeclub Schiedam ‘59 info: Maandagavond: 19: – of
November 2013 Opinieonderzoek Vlaanderen – oktober 2013 Opiniepeiling Vlaanderen uitgevoerd op het iVOXpanel.
Uitgaven aan zorg per financieringsbron / /Hoofdstuk 2 Zorg in perspectief /pagina 1.
Global e-Society Complex België - Regio Vlaanderen e-Regio Provincie Limburg Stad Hasselt Percelen.
 Deel 1: Introductie / presentatie  DVD  Presentatie enquête  Ervaringen gemeente  Pauze  Deel 2 Discussie in kleinere groepen  Discussies in lokalen.
Datastructuren Quicksort
STAPPENPLAN GRAMMATICUS.
Ronde (Sport & Spel) Quiz Night !
Een Concert van het Nederlands Philharmonisch Orkest LES 4 1.
Een optimale benutting van vierkante meters Breda, 6 juni 2007.
Datastructuren Analyse van Algoritmen en O
Datastructuren Analyse van Algoritmen en O
Nooit meer onnodig groen? Luuk Misdom, IT&T
Hoofdstuk 6: Controle structuren
FOD VOLKSGEZONDHEID, VEILIGHEID VAN DE VOEDSELKETEN EN LEEFMILIEU 1 Kwaliteit en Patiëntveiligheid in de Belgische ziekenhuizen anno 2008 Rapportage over.
Elke 7 seconden een nieuw getal
Datastructuren Onderwerp 10
1 Datastructuren Sorteren: alleen of niet alleen vergelijkingen College 5.
1 Datastructuren Lijstjes (Stacks & Queues) Onderwerp 7.
Fibonacci & Friends Met dank aan Gerard Tel.
Datastructuren Zoekbomen
Zoekbomen: rotaties AVL-bomen Rood-zwart-bomen
1 Datastructuren Zoekbomen II Invoegen en weglaten.
1 Datastructuren Sorteren: alleen of niet alleen vergelijkingen (II) College 6.
Gebalanceerde bomen Zoekbomen: weglaten in rood-zwart-bomen.
Parallelle Algoritmen String matching. 1 Beter algoritme patroonanalyse Bottleneck in eenvoudig algoritme: WITNESS(j) (j = kandidaat in eerste i-blok)
1 introductie 3'46” …………… normaal hart hond 1'41” ……..
Oefeningen F-toetsen ANOVA.
Wat levert de tweede pensioenpijler op voor het personeelslid? 1 Enkele simulaties op basis van de weddeschaal B1-B3.
Wie het kleine niet eert ... (quarks, leptonen,….)
1 WIJZIGINGEN UNIEK VERSLAG. 2 Agenda Verbeteringen Veranderingen formulieren Praktische herinneringen Nieuwe formulieren Sociale en culturele participatie.
13 maart 2014 Bodegraven 1. 1Korinthe Want gelijk het lichaam één is en vele leden heeft, en al de leden van het lichaam, hoe vele ook, een lichaam.
1 Datastructuren Quicksort en andere sorteermethoden College 3.
1 Datastructuren Skiplists. 2 Skiplists  Vrij eenvoudige datastructuur  “Makkelijker” dan gebalanceerde bomen  Kunnen hetzelfde als gebalanceerde bomen.
1 Optuigen van datastructuren 2 Dynamische order statistics (2)
Optuigen van datastructuren
Datastructuren Sorteren: bubble, merge, quick
1 Datastructuren Heapsort (2e deel) College 5. 2 Vandaag  Heaps en Heapsort  (eind)  Nog sneller sorteren:  Ondergrenzen  Linair sorteren.
Datastructuren Sorteren, zoeken en tijdsanalyse
Afrika: Topo nakijken en leren.
User management voor ondernemingen en organisaties
ribwis1 Toegepaste wiskunde – Differentieren Lesweek 7
Optuigen van datastructuren Datastructuren Onderwerp 11.
Datastructuren Sorteren, zoeken en tijdsanalyse
1 Datastructuren Een informele inleiding tot Skiplists Onderwerp 13.
ECHT ONGELOOFLIJK. Lees alle getallen. langzaam en rij voor rij
17/08/2014 | pag. 1 Fractale en Wavelet Beeldcompressie Les 5.
17/08/2014 | pag. 1 Fractale en Wavelet Beeldcompressie Les 3.
Fractale en Wavelet Beeldcompressie
Fractale en Wavelet Beeldcompressie
De financiële functie: Integrale bedrijfsanalyse©
Centrummaten en Boxplot
1 Zie ook identiteit.pdf willen denkenvoelen 5 Zie ook identiteit.pdf.
12 sept 2013 Bodegraven 1. 2  vooraf lezen: 1Kor.7:12 t/m 24  indeling 1Korinthe 7  1 t/m 9: over het huwelijk  10 t/m 16: over echtscheiding  16.
13 november 2014 Bodegraven 1. 2 de vorige keer: 1Kor.15:29-34 indien er geen doden opgewekt worden...  vs 29: waarom dopen?  vs.30-32: waarom doodsgevaren.
1 Week /03/ is gestart in mineur De voorspellingen van alle groten der aarden dat de beurzen zouden stijgen is omgekeerd uitgedraaid.
45 levenslessen Klikken voor vervolg Muziek: snowdream.
Intermezzo: Queries op zoekbomen Datastructuren. Queries: hoe op te lossen We hebben: – Een zoekboom (gewoon, rood-zwart, AVL,…) – Een vraag / querie.
1 Datastructuren Sorteren, zoeken en tijdsanalyse College 2.
1 Datastructuren Analyse van algorithmen (vervolg) Heapsort College 4.
Minimum Opspannende Bomen Algoritmiek. 2 Inhoud Het minimum opspannende bomen probleem Een principe om een minimum opspannende boom te laten groeien Twee.
Divide & Conquer: Verdeel en Heers vervolg Algoritmiek.
Minimum Opspannende Bomen
Transcript van de presentatie:

1 Datastructuren Heapsort College 4

2 Vandaag  Kort: ADT vs Datastructuur  Heaps en Heapsort  Tijd over: ondergrenzen voor sorteren; nog sneller sorteren

3 ADT versus Datastructuur  Datastructuur  is een systematische manier van organiseren van data en toegang verlenen tot diezelfde data.  Abstract data type  is een model van een datastructuur waarin gespecificeerd is: type van de data operaties ter ondersteuning van de datastructuur de types van de parameters van deze operaties  Een abstract data type concentreert zich op functionaliteit, niet op tijd.  Vandaag: Heap (is ADT), Array-implementatie van Heap Datastructuren Wat en hoe?

4 Voorbeeldje  ADT: SearchSet  Operatie: IsElement(x): geeft Boolse waarde die vertelt of x in een bepaalde verzameling zit  Datastructuur 1. Ongesorteerde array: operatie kost O(n) tijd 2. Gesorteerde array: operatie kost O(log n) tijd 3. Heap, gebalanceerde boom, hashtabel …

5 Heap vs ADT  Concepten van ADT en Datastructuur zitten bij Heap een beetje doorelkaar  Latere ADT’s en datastructuren zijn ‘zuiverder’  Bijvoorbeeld: we hebben een operatie, die een bepaalde implementatie van een heap snel omvormt tot een geordende array

6 Heap  “Hoop”, zoals in “een steenhoop”  ADT/Datastructuur, gebruikt voor sorteren en priority queue  Een heap is eigenlijk een boom, maar kan heel efficient in een array worden weergegeven  Datastructuren voor “echte” bomen komen later

7 Wat is een heap?  Je hebt max-heaps en min-heaps  Een max-heap is een  Bijna volledige binaire boom, die de  Max-heap eigenschap vervult ... Maar wat bedoelen we hiermee??  O, ja, en een min-heap is... Datastructuren

8 Binaire boom  Binaire boom:  Iedere knoop heeft 0, 1 of 2 kinderen  Volledige binaire boom:  Behalve op het onderste niveau heeft elke knoop 2 kinderen  Een knoop kan hebben:  Ouder (PARENT)  Linkerkind (LEFT)  Rechterkind (RIGHT)

9 Bijna volledige binaire boom  Bijna volledige binaire boom:  Alle niveau’s helemaal gevuld, behalve ‘t onderste dat een eindje van links af gevuld is, en daarna niet meer  Volledige binaire bomen mogen ook (speciaal geval)

10 Termen  Wortel  Diepte van knoop: afstand naar wortel  Hoogte van knoop x: maximale afstand naar blad onder x Zwarte knoop: Diepte 1 Hoogte 2 Zwarte knoop: Diepte 1 Hoogte 2

11 Twee soorten heaps  Max-heap: heeft de max-heap eigenschap  Min-heap: heeft de min-heap eigenschap  Werken eigenlijk net hetzelfde met omgewisseld

12 Heaps  Elke knoop x in de heap heeft een waarde A[x]  Max-heap:  Bijna volledige binaire boom met de  Max-heap eigenschap: voor alle knopen i (behalve natuurlijk de wortel van de boom) geldt: A[PARENT(i)]  A[i]  Min-heap:  Bijna volledige binaire boom met de  Min-heap eigenschap: voor alle knopen i (behalve natuurlijk de wortel van de boom) geldt: A[PARENT(i)] A[i]

Max-heap

Min-heap

15 Heapsort  Gebruikt de Heap datastructuur met implementatie in array  Heap kan heel goed worden geimplementeerd met een “gewoon” array  We hebben een variable heapsize: geeft aan hoeveel elementen in ‘t array tot de heap behoren (1 t/m heapsize zijn heap- elementen)  Bij sorteren worden de elementen NA heapsize gebruikt om gesorteerde deel op te slaan (komt)

16 Implementatie van een heap

17 Implementatie van een heap  Gebruik een array  A[1] is de wortel  A[2], A[3] de achteenvolgende elementen op hoogte 1  A[4], A[5], A[6], A[7] voor hoogte 2,  A[2 r ], … A[2 r+1 -1] voor hoogte r  Vb komt hierna PARENT(i)  return  i/2  LEFT(i)  return 2i; RIGHT(i)  return 2i+1;

18 Array implementatie PARENT(i)  return  i/2  LEFT(i)  return 2i; RIGHT(i)  return 2i+1;

19 Wat telwerk (1)  Er zijn 2 i knopen met diepte i als laag i vol is  1 knoop op diepte 0, 2 op diepte 1, en steeds twee keer zoveel op een laag als op de vorige  Er zijn 2 i -1 knopen met diepte kleiner dan i  Dus: de knopen met diepte i hebben rangnummer 2 i tot en met 2 i+1 -1 Datastructuren Ik praat alleen over volle lagen

20 Telwerk 2  Omdat elke knoop op diepte i twee kinderen op diepte i+1 heeft heeft de jde knoop op diepte i als kinderen de 2j-1 e knoop op diepte i+1 en de 2j e  De jde knoop op diepte i heeft nummer 2 i + j – 1  De 2j-1 e knoop op diepte i+1 heeft nummer 2 i+1 + 2j – 2  De 2j e knoop op diepte i+1 heeft nummer 2 i+1 + 2j – 1 Datastructuren

21 Dus: het klopt! PARENT(i)  return  i/2  LEFT(i)  return 2i; RIGHT(i)  return 2i+1;

22 “Operaties” op Max-Heap  Build-Max-Heap  Maak een heap van een ongeordende array elementen  Gebruikt subroutine: Max-Heapify  Max-Heap-Insert  Voeg een nieuw element toe aan een heap  Heap-Extract-Max  Haal het grootste element uit de heap en lever dat op  Heap-Increase-Key  Verhoog de waarde van een element  Heap-Maximum  Lever de waarde van het grootste element op (zonder iets te veranderen)

23 Build-Max-Heap  Maakt van een ongesorteerde array elementen een heap: Datastructuren

24 Max-heap-insert  Voegt een element toe aan een max-heap Datastructuren

25 Heap-extract-max  Haalt het grootste element uit een max- heap en lever dat op  Zorg dat je weer een heap hebt na afloop Output: 16

26 Heap-increase-key  Verhoog de waarde van een key en zorg dat je na afloop weer een max-heap hebt Datastructuren

27 Heap-max  Geef het grootste element uit de max-heap  Verandert verder niets Output: 16

28 Min-heaps  Net als Max-heaps met min en max (etc.) omgedraaid

29 Als we deze operaties geimplementeerd hebben, kunnen we sorteren Sorteren-Met-Heap- 1eVersie(A)  Build-Max-Heap(A)  Maak array B[1…n]  for i=0 to n-1 do  B[n-i] = Heap-Extract- Max(A)  Algoritme hiernaast sorteert; gebruikt extra array B  Maar ‘t kan ook zonder extra array (komt straks)

30 Belangrijke subroutine: Max-Heapify Max-heapify(A,i)  {Input-aanname: de binaire boom met wortel LEFT(i) en de binaire boom met wortel RIGHT(i) zijn max-heaps}  {Output: permutatie, zodat de binaire boom met wortel i is een max-heap}

Idee: als i groter (  ) is dan beide kinderen: OK, klaar Anders, verwissel met grootste kind en ga dan corrigeren op de plek van ‘t grootste kind

34 Max-heapify Max-Heapify(A,i)  links = LEFT(i)  rechts = RIGHT(i)  if (links  heap-size[A] and A[links] > A[i])  then grootste = links  else grootste = i  if (rechts  heap-size[A] and A[rechts] > A[grootste])  then grootste = rechts  if (grootste  i)  then  Verwissel A[i] en A[grootste]  Max-Heapify(A,grootste) Reken uit wie de grootste is: A[i],A[links] of A[rechts]

35 Analyse Max-Heapify  Correct? Jazeker!  Looptijd: O(hoogte van i)  Met wat hulplemma’s  O(lg n)

36 Hulplemma’s  Een volledige binaire boom met hoogte r heeft 2 r+1 -1 knopen  Bewijs: waar als r=0. Als r>0, wortel plus twee deelbomen van diepte r-1 en 1+(2 r -1)+(2 r -1)= 2 r  Een bijna volledige binaire boom met hoogte r heeft maximaal 2 r+1 -1 knopen  Een heap met n elementen heeft hoogte maximaal  lg n .

37 Tijd Max-Heapify  O(hoogte van i) = O(lg n)

38 Build-Max-Heap Build-Max-Heap(A)  {Input: ongesorteerde rij getallen A[1…lengte(A)]}  {Output: A is een permutatie van input die aan max-heap eigenschap voldoet}

39 Build-Max-Heap Build-Max-Heap(A)  {Input: ongesorteerde rij getallen A[1…lengte(A)]}  {Output: A is een permutatie van input die aan max-heap eigenschap voldoet}  heap-size[A] = lengte(A);  for i=  lengte(A)/2 downto 1 do  Max-Heapify(A,i) That’s all en ‘t klopt ook nog! That’s all en ‘t klopt ook nog!

40 Correctheid Build-Max-Heap  Invariant: aan het begin van de for-loop is elke knoop i+1, … n de wortel van een max-heap  Initieel: klopt, want boompjes van 1 knoop  Onderweg: vanwege Max- Heapify… (bespreken details)  Bij terminatie: fijn, want i=0, dus knoop 1 is wortel van max-heap, dus hele array is max-heap for i=  lengte(A)/2  downto 1 do Max-Heapify(A,i)

41 Tijdsanalyse Build-Max-Heap  Eenvoudige analyse geeft O(n lg n)  Voor iedere i tussen 1 en n/2 doen we O(lg n) werk  Meer precieze analyse geeft O(n). Plan:  Werk voor knoop i is O(hoogte(i)+1)  De hoogte van de boom is  lg n (basis 2)  Er zijn n h+1 knopen met hoogte h in de boom  Gebruik dat

42 Analyse Build-max-heap  Werk voor knoop i is O(hoogte(i)+1)  De hoogte van de boom is  lg n   Er zijn maximaal n h+1 knopen met hoogte h in de boom  Bewijs met inductie omlaag: als h =  lg n  dan is er 1 knoop: wortel; voor kleinere h maximaal twee keer zoveel als voor hoogte h+1  Totale werk is …= O(n)

43

44 Heapsort Heapsort(A)  Build-Max-Heap(A)  for i = lengte(A) downto 2 do  {A[1] is het maximum}  {A[1…heap-size[A]} is een heap, de elementen na heap-size[A] zijn gesorteerd maar niet langer in de heap}  {Invariant: i = heapsize[A]}  Verwissel A[1] en A[i];  Heapsize[A] --;  Max-Heapify(A,1); Sorteert zonder extra geheugen in O(n lg n) tijd

45 Array is ongesorteerde rij elementen Array is heap Array is gesorteerde rij elementen Max-heapify 2e deel heapsort

46 Analyse  Correct, want …  O(n lg n) tijd want…

47 Heap-Maximum(A)  return A[1];  Geef de waarde van het grootste element uit heap A

48 Heap-Extract-Max(A)  if heap-size(A)<1 then error  else  max = A[1];  A[1] = A[heap-size[A]];  heap-size[A] --;  Max-Heapify(A,1);  return max;  Geef de waarde van het grootste element uit A en haal dit element weg  Vgl. met stap uit Heap- sort

49 Heap-Increase Key Heap-Increase-Key(A,i,key)  if key < A[i] then error  else  A[i] = key  while i>1 and A[parent[i]] < A[i] do Verwissel A[i] en A[parent[i]]; i = parent[i]  Verhoog de waarde van element A[i] tot key  Verlaging is niet toegestaan; geven we foutmelding  Als in boek. Niet zo moeilijk om code te veranderen zodat je ook keys kan verlagen (als Max-Heapify)

51 Heap-Insert Max-Heap-Insert(A,key)  heap-size[A]++;  A[heap-size[A]] = -   Heap-Increase- Key(A,heap-size[A],key)  Zolang array A groot genoeg is werkt dit

52 Priority queue  Priority queue is Abstract Data Type met volgende operaties:  Insert (S, x): voeg element x in verzameling S toe  Maximum(S): geef het grootste element uit S  Extract-Max(S): geef het grootste element uit S en haal dit uit de verzameling S weg  Increase key (S, x, k): verhoog de waarde van x tot k  Elementen hebben een waarde uit een totaal geordende verzameling (bijv. ze zijn getallen)  Toepassing bijvoorbeeld: taakselectie in multi-user systeem  Heap implementeert Priority Queue

53 Heap implementeert Priority Queue  Insert: O(lg n) mits oorspronkelijk aangemaakte array groot genoeg  Maximum: O(1)  Extract-Max: O(lg n)  Increase-Key: O(lg n) Snel

54 Hierna  Nog sneller sorteren: kan dat???  Ja, maar alleen als er iets bijzonders aan de hand is… (gebruik makend van eigenschappen van de gegevens)