Lopen Anders Bekeken Loopsymposium 2012
Agenda 08.45 Ontvangst & Welkom 09.30- 10.30 Brandstofsystemen en hun werking Energiesystemen - Floris Wardenaar 10.30- 10.50 pauze 10.50- 11.50 Multi-Branadstofsysteem management Brandstofsystemen in praktijk - Kelvin Holgerholt 12.00- 13.00 lunch 13.00- 14.00 Duur-Brandstofsyteem training Anders bekeken – Luc van Agt 14.00-14.30 pauze en omkleden 14.30- 15.30 Praktijk 15.30- 15.50 Paneldiscussie 15.50- 16.00 Afsluiting 16.00 Omkleden en borrel
Seneca Sports and Exercise Nutrition Voeding in relatie tot substraat Energiesystemen Floris Wardenaar, MSc. HAN Sport en Bewegen Seneca Sports and Exercise Nutrition www.hansportnutrition.nl InnoSportLab Papendal http://www.innosport.nl/nl/InnoSportLabs/InnoSportLab_Papendal
Invloed van voeding op substraatgebruik Er is meer dan substraatgebruik Metabool/fysiologisch spierschade en herstel groei oxidatieve stress immuunfunctie Doelstellingen trainingsprogramma andere activiteiten rust
Sportcategorieën Duursport: relatief langdurige inspanningen (aëroob karakter) Krachsport: gericht op toename van kracht (anaëroob karakter) Spelsport: afwisseling van duur- en krachtmomenten (anaëroob en aëroob karakter) Voeding en Sport I
ATP ATP-ase ADP + P + energie Energievoorziening ATP ATP-ase ADP + P + energie Aanvulling ATP: creatinefosfaat koolhydraten vetten eiwitten Voeding en Sport I
Aanvulling ATP: brandstoffen en systemen 04/04/2017 Aanvulling ATP: brandstoffen en systemen Anaeroob alactisch ATP en creatine veel vermogen, kleine voorraad Anaeroob lactisch koolhydraten klein vermogen, kleine voorraad, melkzuur Aeroob koolhydraten, vetten en eiwitten (!) weinig vermogen, grote voorraad
Fysiologische relatie voeding en sport 04/04/2017 Fysiologische relatie voeding en sport
Energielevering ATP, CP 7-10 sec (anaeroob) koolhydraten 40-90 sec 04/04/2017 Energielevering ATP, CP 7-10 sec (anaeroob) koolhydraten 40-90 sec koolhydraten 60-90 min (aeroob) vetten uren
Substraatgebruik Voeding en Sport I
Randvoorwaarden per systeem
Koolhydraatverdeling in het lichaam (McArdle 2001)
Relatie tussen kh-inname en glycogeenopslag (Burke et al. 2005)
04/04/2017 Bij koolhydraten denk je aan pasta, maar rijst is ook een goede bron
Invloed van dieet op prestatie en spierglycogeen (Bergstrom et al
Toename van inspanningsduur door koolhydraatinname tijdens inspanning CHO oxidation (g/min) Blood glucose (mmol/L) Carbohydrate Carbohydrate Placebo Placebo Long been known that CHO ingestion delays fatigue during prolonged intense exercise. Metabolic explanation is shown simply here by Ed Coyle, 25 yrs ago CHO ingestion not only results in the maintenance of blood glucose levels during the latter stages of exercise and therefore a sparing of muscle glycogen, but importantly the delivery of CHO to the muscle, or CHO oxidation rates, also remain elevated as exercise continues. Therefore, from a metabolic standpoint, it was shown that endurance capacity could be improved by maintaining the delivery of CHO to the working muscle. Time (min) Cycling at 70% VO2max Coyle et al. J Appl Physiol. 61:165-172, 1986
Type koolhydraten beïnvloed koolhydraatoxidatie Exogenous carbohydrate Oxidation rate (g/min) Jeukendrup and Jentjens, Sports Med 29(6): 407-424, 2000 A whole body of work which has systematically examined how the type of CHO ingested during prolonged exercise can influence the exogenous CHO oxidation rates. This figure summarises a series of studies which measured peak exogenous CHO oxidation rates achieved during prolonged exercise when a single source of CHO was ingested at varying rates. I’d like to make two points from this figure. 1 – type of CHO ingested influenced CHO oxidation rate. If we compare glucose vs galactose, when ingested at a rate of ~1.2 gmin, peak oxidation rates were markedly higher with glucose ingestion compared with galactose. 2 – peak CHO oxidation rates with ingestion of a single CHO sources plateau’ed at 1g/min, irrespective of whether CHO was ingested at a high or low rate.
Intestinal transport of different carbohydrates into circulation using SGLT1 transporter glucose SGLT1 GLUT2 Na+ ADP ATP Rate limiting step for CHO oxidation rates thought to be the transport from the intestine into the circulation. Different CHO sources use different intestinal transporters. For example, glucose and galactose are transported from the intestine into the blood via the sodium dependent transporter 1, K+ Na+ Na+ K+
Fructose uses GLUT 5 transporter glucose galactose glucose SGLT1 galactose Na+ Na+ GLUT2 ATP ADP K+ Na+ Na+ K+ whereas fructose on the otherhand uses the GLUT 5 transporter. It was therefore theorized that the co-ingestion of multiple transportable CHOs in large amounts could elevate exog CHO ox rates above 1 during exercise fructose fructose GLUT5
Peak oxidation rate (g/min) Ingesting multiple CHO sources increases exogenous CHO oxidation rates above 1 g/min Jentjens, R. L., L. Moseley, R. H. Waring, L. K. Harding, and A. E. Jeukendrup (2004a). Oxidation of combined ingestion of glucose and fructose during exercise. J. Appl. Physiol. 96(4):1277-1284. Jentjens, R. L., M. C. Venables, and A. E. Jeukendrup (2004b). Oxidation of exogenous glucose, sucrose, and maltose during prolonged cycling exercise. J. Appl. Physiol. 96(4):1285-1291. Jentjens, R. L., and A. E. Jeukendrup (2005a). High rates of exogenous carbohydrate oxidation from a mixture of glucose and fructose ingested during prolonged cycling exercise. Br. J. Nutr. 93(4):485-492. Jentjens, R. L., C. Shaw, T. Birtles, R. H. Waring, L. K. Harding, and A. E. Jeukendrup (2005b). Oxidation of combined ingestion of glucose and sucrose during exercise. Metabolism 54(5):610-618. Peak oxidation rate (g/min) 2.4 2.4 2.4 SUC SUC FRUC 1.8 1.8 1.8 1.8 1.75 1.70 FRUC SUC FRUC FRUC 1.50 1.2 1.26 1.25 1.20 This theory has been systematically examined in a series of studies which measured peak CHO oxidation rates with the ingestion of two or even three types of CHO. Grey bars depict the rate at which CHO was ingested Coloured bar depict peak CHO oxidation rates achieved during prolonged exercise lasting 2 h or more. First compare these four bars, we can see that when ingesting CHO at a rate of 1.8 g/min, CHO oxidation rates are higher when the CHO drink consisted of multiple sugars compared to glucose alone, well in excess of 1 g min achieved with ingestion of single sugars. The composition of the CHO drink also influences CHO oxidation rates when ingested at higher rates. Here we can see that the combination of glucose and fructose resulted in a greater CHO oxidation rate compared with the combination of glucose and sucrose, and now we are way above the 1 g min seen with glucose alone. In addition, fewer complaints of GI distress during exercise were also reported with multiple transportable CHO’s such as glucose and fructose were ingested. Combined ingestion of glucose and fructose and glucose and sucrose at rates corresponding to 1.8 g min during exercise has been shown to elicit oral CHO oxidation rates up to 1.3 g min. which is greater than the previously observed maximal rate of exogenous CHO oxidation, that of 1gmin. Thus the ingestion of multiple tranportable CHO may enhanced intestinal absorption, explaining the higher exogenous CHO oxidation rates when two forms of CHO are ingested rather than one. Subsequent studies from our lab have confirmed that combined ingestion of large amounts of glucose and frustocse, glucose and sucrose, glucose, fructose and sucrose or glucose polymers and frustose can increase exogenous CHO ox during ex by 20-55% and up to oxidation rates of 1.75 g min compared to when an isoenergetic amount of CHO that uses a single intest tranporter is ingested. MD neutrla taste, thus replace glucose in sports drinks. Wallis 2005 – demonstrated that the combined ingestion of MD and fructose elicited exog CHO oxidation rates greater than one. Although the question still scientifically remains that does an increased CHO oxidation rates trnalsate into an improved performance, it is encouraging to note that ingestion of multiple trnasportable CHO mixtures results in sparing of endogenous CHO stores and reduiced incidence of GI problems during prolonged exercise compared with ingestion of single CHO sources. 0.83 0.80 GLU GLU GLU GLU MD GLU GLU GLU GLU GLU GLU+SUC GLU+SUC GLU+SUC+ FRU GLU+FRUC MD+FRUC GLU+FRUC
Vocht (in verschillende vormen) 55 g CHO= 220 kcal 19 g CHO= 75 kcal
04/04/2017 Voedingssupplement “Voedingssupplementen zijn producten met geconcentreerde bronnen van nutriënten, die worden aangeboden als aanvulling op de opname van deze nutriënten uit de normale dagelijkse voeding”
Waarom gebruiken mensen supplementen? 04/04/2017 Waarom gebruiken mensen supplementen? gezondheidsbevorderend effect genezing (curatief) preventie bevorderen van prestatie (ergogeen) compensatie op tekorten voorziening in verhoogde behoeften
Supplementgebruik (Nederland) Pilotdata (Wardenaar et al. 2010-2012) Timingspilot (2012), n=53, 50,9% gebruik, waarvan 32% vitaminen en/of mineralen, 24,5% eiwitpreparaten, 22,6 sportdranken, 13,2% overige koolhydraten, 11,3% cafeine, 5,6% b-alanine en creatine en 1,8% creatine. Inname vooral bij ontbijt of avondeten. Topsport Gelderland (2011), n=23, jonge sporters vanaf 14 jaar, 61% heeft ooit een supplement of sportvoedingsproduct gebruikt. Studenten HAN Sport en Bewegen (2011), n=129, 54% heeft ooit een supplement of sportvoedingsproduct gebruikt. Het overgrote deel van de gebruikers gebruikt in de aanschaf van supplementen geen bron. De supplementen worden het sterkst aanbevolen door ouders en de trainer/coaches. Volleybal A en B league (2010), n=32, 91% heeft ooit een supplement of sportvoedingsproduct gebruikt. Dit zijn vitamines en/of mineralen (83%), sportdranken (95%), overige koolhydraten (79%) en overige supplementen (69%). Minder populair zijn eiwitten (14%) en vet/vetzuren (28%).
Supplementcategorieën
De vochtbalans
Vochtverlies en geslacht
Gevolg van vochtverlies Gleeson, M. et al. Dehydratie, rehydratie en inspanning in de hitte. Insider. Volume 4; 2, 1996
Zweetverlies
Bij inspanning >60 minuten: 04/04/2017 Aanbevelingen voor vocht en koolhydraten Bij inspanning >60 minuten: 30-90 gram CHO/ uur 250-350 ml H2O/ kwartier
Vet In het lichaam Vetweefsel (adipose tissue) Intra musculair triglyceride (IMTG) Vrije vetzuren (FFA) Gedachte: hogere vetoxidatie zorgt voor sparing van spierglycogeen trainingsopties nuchter trainen vetrijk dieet train low – compete high
Nuchter trainen Aanwezig: Vetweefsel Vrije vetzuren Intramusculair triglyceriden Leverglycogeen Spierglycogeen
Lichaam gebruikt verschillende energiesystemen Systemen zijn trainbaar beïnvloedbaar met voedingsinterventie Afhankelijk van prestatiedoel combinatie van training en voedingsinterventie
Blog: www.hansportnutrition.nl Twitter: @HANsportnutr 04/04/2017 Blog: www.hansportnutrition.nl Twitter: @HANsportnutr
Lopen Anders Bekeken Loopsymposium 2012