Hysteroscopie : Mono- en bipolaire energie Dr. M. Francx ZNA Campus Middelheim
Principes bij gebruik A. Inleidende begrippen electrochirurgie fysische begrippen monopolaire electrochirurgie begrippen : 1. cutting = electrosectie = vaporisatie 2. coagulatie = desicatie 3. Bipolaire electrochirurgie Principes Werking B. Versapoint 1. werking 2. electroden 1)Dunne bipolaire electroden Typen Indicatie voordelen 2) Brede bipolaire electroden Elektrocutie is produced hen valence electrons are freed from atoms of conductive materials. When these electrons are set in motion, an electric current (I) is produced that is measured in amperes. Opposite charges at the ends of a conductor cause electrons to flow in one direction from the negative toward the positive terminal. The difference in potential between the positive and negative poles provides the electromotive force (voltage, V) to drive the current through the conductor. Current that flows in one direction through a circuit is called direct current (DC). When alternating current (AC) flows through a circuit, the movement of electrons reverses direction at regular intervals which is expressed in cycles per second (hertz). Since the effects of current on the load are most important, the periodic reversal of current flow does not undo its work. The amount of current that flows through a circuit is determined by the electromotive force across the circuit and the impedance that circuit provides the current. Impedance is the difficulty that a material presents to the flow of electrons, and is measured in ohms. The impedance of biologic tissues varies depending largely upon water content. As expressed by Ohm’s Law, current is directly proportional to the voltage and inversely proportional to the resistance. Therefore, greater resistance requires greater voltage and, with a fixed resistance, greater voltage creates greater current.
Fundamentals of Electrosurgery 3. Pijnstilling 4. Gebruiksregels 5. Indicaties Myomectomie Endometriumablatie Adhesiolysis (Asherman) Poliepectomie Septumresectie 6. Voor- en nadelen
Fundamentals of Electrosurgery Ohm’s Law V = I x R V = Voltage I = Current R = Resistance or impedance
Voltage is Force What Is Voltage? Fundamentals of Electrosurgery Electromotive force that drives current through a circuit (tissue) Voltage is Force
Fundamentals of Electrosurgery What Is Electrosurgery? Application of high frequency alternating current (AC) Creating secondary thermal tissue effects
Fundamentals of Electrosurgery Electrosurgery Utilizes Alternating Current (AC) Typical electrosurgical generators work at 500,000 - 3,000,000 hertz (cycles per second) Frequency range needed to prevent neuromuscular stimulation – the so-called Faradic effects Typical electrosurgical generators (ESU’s) operate at frequencies of 500,000 to 3,000,000 cycles per second (Hertz). This frequency range is necessary in order to prevent neuromuscular stimulation and tetanic muscle contraction.
Fundamentals of Electrosurgery Technical implications of increasing voltage More bubbles from hydrogen gas formation Carbonization and darkening of tissue Adherence Less margin for error near viscera and vessels
Monopolar Electrosurgery
Monopolar Electrosurgery What Is Monopolar Electrosurgery? High density current enters tissue from small active electrode creating secondary thermal events Current flows through the patient via a myriad of conductive pathways and volume conduction Current dispersed over a large surface return electrode Current returns to isolated ground housed in the electrosurgical generator
Monopolar Electrosurgery Cutting = Vaporization Tissue Effects of Electrosurgery: Cutting = Vaporization Electrosection Coagulation = Desiccation
Monopolar Electrosurgery Monopolar Electrosurgery in a Fluid Environment Electrolyte-containing distention media are effective conductors Act to enlarge surface area of active electrode Dramatically reduce the current density Rendering electrosurgical effect ineffectual Non-conductive distention media are effective insulators Glycine, sorbitol, mannitol Current density is maintained, electrosurgical effect unaltered Desiccation, cutting, vaporization, fulguration all available
Monopolar Electrosurgery RUNNING CURRENT Active Electrode Generator TISSUE (mass) Return Electrode
Monopolar Electrosurgery Minimizing Risk With Return Electrode Pads Burn = Heat x Time/Surface Area
Bipolar Electrosurgery Monopolar “Active” Electrode “Return” Electrode cutting, coagulation High voltages (< 9000V) Deep necrosis, coagulation margins
Fundamentals of Electrosurgery Monopolair electrolietenarm milieu -> gevaar fluid-overload (TURP-syndroom) ‘voorbijgestreefd’ (?) gevaar brandwonden (op afstand) cutting + coagulatie Bipolair fysiologisch water -> gevaar fluid-overload beperkt ‘actueel’ energiestromen beperkt (gevaar brandwondenbeperkt)
Bipolar Electrosurgery Bipolar Electrosurgery “Active” Electrode “Return” • Desiccation Local effect Low power and voltages
Bipolar Electrosurgery “ Active ” Electrode “Return” • Desiccation Local effect Low power and voltages VersaPoint Bipolar Vaporisation , desiccation cutting controled margins averaged Normal saline
Bipolar Electrosurgery What Is Bipolar Electrosurgery? Consolidation of active and return electrodes into single instrument Current is symmetrically distributed through the tissue between the two electrodes Patient is not part of essential current pathway Thermal damage is limited to discrete volume of tissue Power requirements are reduced with higher electrosurgical efficiency
Bipolar Electrosurgery Mechanism of Desiccation
Bipolar Electrosurgery VersaPoint Bipolar VersaPoint Bipolar Normal saline “Return” Electrode “Active” Electrode • Vaporisation, desiccation, Vaporisation, desiccation, cutting cutting • • controled margins controled margins • • averaged power and voltages averaged power and voltages
Bipolar Electrosurgery Monopolar “Return” Electrode “Active” • cutting, coagulation High voltages ( < 9000V) Deep necrosis, coagulation margins Bipolar Desiccation Local effect Low power and voltages VersaPoint Bipolar Vaporisation, desiccation, cutting controled margins averaged power and voltages Normal saline
Bipolar Electrosurgery Tissue Effect Control This slide demonstrates how the generator regulates vaporization by manipulating the size of the steam pocket around the bipolar electrode.
Bipolar Electrosurgery System for Bipolar Hysteroscopic Surgery 1.6 mm (5 F) in diameter Two poles separated 2 mm at distal shaft by ceramic insulator Electrodes designed for variable tissue effects Ball tip = precise vaporization and desiccation Spring tip = rapid tissue vaporization and desiccation Twizzle tip = vaporization and needle-like cutting Given small size and focused tissue effects, best for polypectomy, adhesiolysis, vaporization of smaller submucous myomata
Bipolar Electrosurgery Electroden Dunne bipolaire electroden = 5F = 1,6 mm werken statisch : electrode + scoop bewegen samen Veer : vooral vaporisatie Staafje : fijne cutting + coagulatie Bolletje : coagulatie Brede bipolaire electroden = 24 F = 8 mm breed - 2 of nu 4mm hoog werken passief : alleen de electrode beweegt zonder scoop Bipolaire loop : 45° of 90° cutting + coagulatie Gegroefde electrode : 0°
Bipolar Electrosurgery INDICATIE operatieve hysteroscopie - Ambulant : bipolaire kleine electroden kleine tot middelgrote poliepen kleine synechieën kleine myomata type 0/1 (<2cm) septum Rachi/alg.anesthesie: loop of razor . Grote poliepen . Grotere Myomata type 0/1/2 . Endometriumresectie . Asherman
Bipolar Electrosurgery:Ambulante Hyst No dilatation No general anaesthesie Less risks for perforation Less risks for laceration of the cervix No risk for sorbitol overload No risk for burn injuries
Bipolar Electrosurgery Resectoscopic System Bipolar Vaporization and Desiccation Requires dedicated 27 F resectoscope Mimics tissue effect of monopolar grooved electrodes Bipolar electrode configuration Proximal stainless steel passive electrode Ceramic alloy insulator Distal 4 mm (24 F) fixed grooved stainless steel active electrode
Bipolar Electrosurgery Bipolar Loop Electrode
Operative Hysteroscopy Alg. of locoreg. Anesth. Myomectomy Polypectomy Synechiolysis Septum resection Endometrial ablation
Bipolar Electrosurgery Pijnstilling A. Gebruik kleine electroden: Ofwel : 1 tablet cytotech in de vagina de avond voor de ingreep en 1 tablet voor de ingreep. Dit is een prostaglandinepreparaat dat gegeven wordt om de cervix te verweken en het instrumentarium gemakkelijker door de cervix te laten gaan. Een uur voor de ingreep geeft men een Brufen Forte of Voltaren. Deze kan later herhaald worden voor pijnstilling. 30’ voor ingreep : 1 suppo Indocid 100 mg of Brufen Fort. 0,25 mg Atropine I M na ingreep : direct erna : 1 Cataflam na drie uur: 1 Cataflam
Bipolar Electrosurgery Pijnstilling B. Gebruik grote electroden: Algemene anesthesie of peridurale of 2 ...
Bipolar Electrosurgery Pijnstilling B. Gebruik grote electroden: Algemene anesthesie, peridurale of rachi
Bipolar Electrosurgery Gebruiksregels De electrode nooit activeren bij dieper inbrengen De electrode niet activeren bij onduidelijk zicht Gebruik de minst noodzakelijke power Gebruik de laagste voltage Respecteer de positie van de camera Let op de oppervlakkige vascularisatie en dunheid van het endometrium h.v. de isthmus Werk met ervaren personeel Neem een biopsie vóór de vaporisatie Doe een correctie vochtmonitorring met gebruik van een pomp zelfs bij gebruik van NaCl.
Operative Hysteroscopy Intrauterine Lesions : - Polyps and myomas- Theyt don’t go away in menopauze !
Operative Hysteroscopy Submucous Myoma Classification Type Intramural Extension 0 None I <50% II >50%
Bipolar Electrosurgery Mogelijke verwikkelingen bij hysteroscopie Perforatie Bloeding Infectie Thermaal letsel Vochtoverlading Hyponatriëmie Noodzaak vroegtijdig stoppen Haematometra Laparoscopie / laparotomie Uterusperforatie = stop ingreep cave ! darmletsel eventueel laparoscopie
Operative Hysteroscopy UTERINE PERFORATION = TERMINATION
Postoperative Bleeding Following Hysteroscopic Myectomy Managing Distention Media Postoperative Bleeding Following Hysteroscopic Myectomy
Instelling 1 2 3 1 = VC =Vapor Cutting 2 = Vaporisatievermogen 3 = Blunt 1 2 3
Instelling Vapor Cutting : VC 1 = max 6 mm. VC 2 = matig 4 mm. VC 3 = zwak 2 mm.
Instelling Vaporisatievermogen: in Watt ts. 0 en max 200 Schakelt autom. in op 130 bij aanzetten
Instelling Blent = zuiver coagulatie ts. 0 en 1OO Start bij aanzetten machine vlg de electrode Spring : 60 Twizzle : 50 Ball Point : 24