De presentatie wordt gedownload. Even geduld aub

De presentatie wordt gedownload. Even geduld aub

Operations Research Hoorcollege week 4 Deel 2 Inleiding wachtrijsystemen De klassificatie van Kendall Het M/M/1-model R.B.J. Pijlgroms Instituut Informatica.

Verwante presentaties


Presentatie over: "Operations Research Hoorcollege week 4 Deel 2 Inleiding wachtrijsystemen De klassificatie van Kendall Het M/M/1-model R.B.J. Pijlgroms Instituut Informatica."— Transcript van de presentatie:

1 Operations Research Hoorcollege week 4 Deel 2 Inleiding wachtrijsystemen De klassificatie van Kendall Het M/M/1-model R.B.J. Pijlgroms Instituut Informatica en Elektrotechniek Hogeschool van Amsterdam

2 2 Wachtrijsystemen

3 3 Kenmerken van Wachtrijen  verdeling van aankomsttijd ook: inter arrival time  verdeling van bedieningstijd ook: service time  aantal servers of loketten # servers aankomsten bedieningen

4 4 Kenmerken van Wachtrijen (VERVOLG)  Verdeling van aankomst- resp. bedieningstijden  Notatie: M : de tussenaankomsttijd is negatief exponentiëel verdeeld D : de tussenaankomsttijd is constant G : de tussenaankomsttijd is willekeurig verdeeld

5 5 Kenmerken van Wachtrijen (VERVOLG)  maximaal aantal toegestane klanten in het systeem of ook: systeem-capaciteit  omvang van de gehele populatie van mogelijke klanten  protocol van bediening van de wachtrij

6 6 Kenmerken van Wachtrijen (VERVOLG)  Systeem-capaciteit: oneindig: ‘iedereen’ kan zich als klant melden eindig: bijv. de wachtruimte is beperkt! (vergelijk de printbuffer of het geheugen, beperkte ruimte in kapsalon.)

7 7 Kenmerken van Wachtrijen (VERVOLG)  De populatie (dit is iets anders dan de systeem-capaciteit) veelal oneindig (‘iedereen’ kan zich als klant melden) soms eindig (vergelijk bijv. kapotte machines die zich ‘melden’)

8 8 Kenmerken van Wachtrijen (VERVOLG)  Protocol: volgorde waarin de wachtrij wordt bediend FIFO - First In First Out  FCFS - First Come First Served LIFO - Last In First Out  LCFS - Last Come First Served SJN - Shortest Job Next SIRO - Service In Random Order SPT - Shortest Processing Time first PR - according to PRriority

9 9 De Kendall-notatie  de genoemde kenmerken worden afgekort volgens Kendall, bijv.: M/M/1/  FIFO  negatief exponentieel verdeelde aankomsttijd  negatief exponentieel verdeelde bedieningstijd  één server  systeem-capaciteit (= oneindige wachtruimte + 1 =  )  oneindige populatie  First In First Out bedieningsvolgorde

10 10 De Kendall-notatie (vervolg)  dit wordt afgekort tot M/M/1  voortaan meestal korte notatie dus capaciteit en populatie worden dan oneindig verondersteld en volgorde is FIFO. Zoniet, dan de lange notatie. Enkele voorbeelden M/M/4M/D/3/8 M/G/1M/M/4/4 D/M/2/4 M/M/2/5/5

11 11 Notatie van Kendall A/B/s/N/K met: A= verdeling aankomsttussentijd B= verdeling bedieningstijd s= aantal servers N= capaciteit van het systeem K= omvang van de ‘doelgroep’ afkortingen verdelingen (d.w.z. A, B): M = exponentieel D = constant/deterministisch G = algemeen (E k = Erlang)

12 12 Parameters wachtrijsysteem Resumerend gedrag wachtrij-systeem afhankelijk van  aankomstproces ( en verdeling tussentijd)  bedieningsproces (  en verdeling bedientijd)  aantal loketten  capaciteit van het systeem  omvang van de doelgroep  bedienings-protocol

13 13 Kendall notatie oefeningen  kapsalon met 3 knipstoelen en 5 wachtstoelen  6 machines die onderhouden worden en 1 monteur met Poisson-verdeelde bedieningsintensiteit  vliegtuigen die landen op 1 landingsbaan  Wachtrij in kantine met exponentieel verdeelde tussenaankomsttijden en constante bedieningstijden

14 14 Interessante afgeleide systeem- variabelen   = bezettingsgraad (server utilization, percentage van de tijd dat een server bezig is waarbij s = aantal parallelle servers)  P n = kans op n klanten in het systeem  N q = gemiddeld aantal klanten in het systeem (bediening en wachtrij)  N w = gemiddeld aantal klanten in de wachtrij  T q = gemiddelde tijd dat een klant in het systeem aanwezig is (bediening en wachtrij)  T w = gemiddelde tijd dat een klant in de wachtrij aanwezig is

15 15 Overgangs- en stationair gedrag  overgangsgedrag (vanaf t = 0) prestatie indicatoren als gemiddelde wachttijd T w en gem. aantal klanten in de wachtrij N w afhankelijk van de tijd d.w.z. T w (t), N w (t)  stationair gedrag ( t =>  ) prestatie-indicatoren als gemiddelde wachttijd niet meer afhankelijk van de tijd (d.w.z. de waarschijnlijkheid dat systeem zich in gegeven toestand bevindt is niet tijdsafhankelijk)

16 16 Overgangsgedrag  geschiedenis aantal klanten in systeem = grafiek aantal klanten tegen tijd  Kan ook in tabel  Je moet het wachtrij-protocol kennen FIFO (first in first out) LIFO (last in first out) SIRO (service in random order) SPT (shortest processing time first) PR (according to priority)

17 17 Geschiedenis oefening aantal bezoeken afgelegd door verpleger (N) ? voor alle N bezoeken de begintijd ? voor alle bezoeken de door patient in systeem doorgebrachte tijd ? voor alle bezoeken de door patient in rij doorgebrachte tijd ? NqNq

18 18 Het M/M/1/  /  - model

19 19 Het M/M/1/  /  - model  Negatief-exponentieel verdeelde tussenaankomsttijden ( gemiddelde aankomstintensiteit = [klanten/sec], gem. tussenaankomsttijd =  [sec] ) (N.B.:  =1/   Negatief-exponentieel verdeelde bedieningstijden (gemiddelde bedieningsintensiteit =  [klanten/sec], gem. bedieningstijd T s =   [sec])  aantal loketten s = 1  Systeemcapaciteit is oneindig  Populatiegrootte is oneindig

20 20 De Markov-keten en de evenwichtsvergelijkingen: M/M/1 … - Markov-keten. - Cirkels geven toestanden aan waarin het systeem kan verkeren. - Overganskansen i.h.a. niet constant.

21 21 Het M/M/1-model  In het M/M/1-model is: het aankomstproces een Poisson-proces met gemiddeld  aankomsten per tijdseenheid de tijd tussen het afronden van twee bedieningen negatief exp. verdeeld met gemiddeld  bedieningen per tijdseenheid het aantal servers = loketten gelijk aan 1  Dus parameters n en  n hangen niet van n af!!

22 22 Het M/M/1-model (vervolg)  Dus n =  voor alle n = 0, 1, 2,...  En  n =  voor alle n = 1, 2, 3,...  Wel moet gelden : <  anders loopt het systeem “vol”  De grootheid wordt de bezettingsgraad van het systeem genoemd  De evenwichtsvergelijkingen worden :

23 23 Het M/M/1-model (vervolg) 0123   … n-1nn+1n+2   … …

24 24 Het M/M/1-model (vervolg)  Bovendien is de som van alle kansen 1

25 25 Het M/M/1-model (vervolg) VOORBEELD Er komen op een netwerkserver gemiddeld 10 berichten per minuut binnen. De gemiddelde verwerkingstijd voor een bericht is 4 seconden. 1. wat is de kans op een ‘idle server’? 2. wat is de kans op 1, 2 resp. 3 berichten in het systeem? 3. wat is de kans op minstens 4 berichten in het systeem?

26 26 Het M/M/1-model (vervolg) ANTWOORD Eerst: is natuurlijk 10 ( berichten per minuut) En:  is 15 !! ( berichten per minuut)  Dus de bezettingsgraad  = 10/15 = 2/3  De kans op een ‘idle server’ = de kans op 0 berichten in het systeem: P 0 dus.

27 27 Het M/M/1-model (vervolg) De kans op 4 of meer : =0.198 We vonden: P n =  n (1-  )

28 28 Nogmaals de notaties voor afgeleide systeemvariabelen  We definieren een aantal stochasten: N s = het aantal klanten dat bediend wordt T q = de tijd die een klant in het systeem doorbrengt  (ook wel de doorlooptijd genoemd) T w = de tijd die een klant in de rij staat T s = de tijd die nodig is voor de bediening van een klant N q = het aantal klanten in het systeem N w = het aantal klanten in de wachtrij

29 29 Little’s Result We nemen voortaan aan dat alle genoemde stochasten niet afhangen van de tijd Er geldt : N q = N w + N s T q = T w + T s  Bovendien geldt Little’s result: E (N q ) =  E (T q ) E (N w ) =  E (T w ) en E (N s ) =  E (T s )

30 30 Little’s Result (vervolg)  Zoals aldoor is het gemiddeld aantal aankomsten per tijdseenheid  Little heeft bewezen dat dit resultaat geldig is onafhankelijk van de aankomstverdeling !!  Het bewijs is abstract, het resultaat eenvoudig en aannemelijk.

31 31 De verwachting van N q (M/M/1-model) help!

32 wiskunde trucs!!!

33 33 De verwachting van N q en T q Uit het voorgaande volgt dus: (bedenk dat  < 1 ) En dan volgt met het Result van Little:

34

35 35 De verwachting van N w en T w  De verwachte wachttijd is : de verwachte totale tijd in het systeem minus de verwachte bedieningsduur

36 The End


Download ppt "Operations Research Hoorcollege week 4 Deel 2 Inleiding wachtrijsystemen De klassificatie van Kendall Het M/M/1-model R.B.J. Pijlgroms Instituut Informatica."

Verwante presentaties


Ads door Google