De presentatie wordt gedownload. Even geduld aub

De presentatie wordt gedownload. Even geduld aub

Introductie tot de lineaire regressie

Verwante presentaties


Presentatie over: "Introductie tot de lineaire regressie"— Transcript van de presentatie:

1 Introductie tot de lineaire regressie
Twee gemiddelden Meer gemiddelden Nog meer gemiddelden: Enkelvoudige regressie en correlatie Multiple lineaire regressie

2 RECAP: twee gemiddelden: t-test

3 RECAP: twee gemiddelden: t-test

4 RECAP: twee gemiddelden: t-test

5 RECAP: meerdere gemiddelden: variantie analyse (AN O VA)

6 RECAP: meerdere gemiddelden: variantie analyse (AN O VA)

7 RECAP: meerdere gemiddelden: variantie analyse (AN O VA)

8 Introductie tot de lineaire regressie
Inleiding Doel: bestuderen van de relatie tussen twee continue variabelen X en Y statistisch verband: associatie (# causaal verband); positief vs negatief wanneer het doel is te weten of twee variabelen geassocieerd zijn: correlatie onderzoek wanneer het doel is de ene variabele uit de andere te voorspellen: regressie onderzoek

9 Introductie tot de lineaire regressie
Correlatie-onderzoek Stap 1: spreidingsdiagramma (scatterplot) Zijn DNA-index en proliferatieindex geassocieerd?

10 Introductie tot de lineaire regressie
Correlatie-onderzoek nummer systolische bloeddruk diastolische bloeddruk lichaamsgewicht 1 122.5 82.5 45 2 125 55 3 75 43 4 110 65 5 137.5 90 44 6 47 7 8 112.5 80 33 9 135 85 41 10 130 60 11 120 39 12 13 67.5 37 14 100 15 105 70 16 102.5 72.5 Gemiddelde 118.6 78 44.6 Stand. Dev. 11.7 7.4 7.5

11 Introductie tot de lineaire regressie
Correlatie-onderzoek

12 Introductie tot de lineaire regressie
Correlatie-onderzoek

13 Introductie tot de lineaire regressie
Correlatie-onderzoek Stap 2: berekenen van een correlatiecoëfficiënt Pearson Spearman Kendall Waarde: -1 tot +1 -1 en +1 geven perfect verband aan Meest gebruikt: Pearson (productmoment-correlatiecoëfficiënt), r Toets en betrouwbaarheidsinterval Populatie correlatiecoëfficiënt:

14 Introductie tot de lineaire regressie
Pearson productmoment-correlatiecoëfficiënt

15 Introductie tot de lineaire regressie
Correlatie-onderzoek

16 Introductie tot de lineaire regressie
Pearson productmoment-correlatiecoëfficiënt

17 Introductie tot de lineaire regressie
Pearson productmoment-correlatiecoëfficiënt Deel teller en noemer door n-1, dan is waarin SX en SY de steekproefstandaardafwijkingen zijn van X en Y en SXY is de zgn steekproefcovariantie van X en Y

18 Introductie tot de lineaire regressie
Covariantie: gevoelig voor mate van associatie Gemiddelde leeftijd Gemiddelde pols

19 Introductie tot de lineaire regressie
Covariantie: gevoelig voor mate van associatie

20 Introductie tot de lineaire regressie
Pearson productmoment-correlatiecoëfficiënt Test: Nul hypothese: correlatiecoëfficiënt is 0 Betrouwbaarheidsinterval

21 Introductie tot de lineaire regressie
Correlatiematrix

22 Introductie tot de lineaire regressie
Correlatiematrix

23 Introductie tot de lineaire regressie
Drie-dimensioneel:

24 Introductie tot de lineaire regressie
Correlatie-onderzoek

25 Introductie tot de lineaire regressie
Correlatie-onderzoek

26 Introductie tot de lineaire regressie
Correlatie-onderzoek

27 Introductie tot de lineaire regressie
Correlatie-onderzoek Contraindicaties, voorwaarden X en Y: bivariate normaalverdeling Lineariteit Uitbijters

28 Introductie tot de lineaire regressie
Correlatie-onderzoek Voorwaarden niet voldaan Niet parametrische equivalent: SPEARMAN Correlatiecoëfficiënt

29 Introductie tot de lineaire regressie
Enkelvoudige lineaire regressie (simple linear regression) X en Y: spelen verschillende rol Y (afhankelijke variabele) wordt verklaard door X (onafhankelijke variabele) X-en moeten geen aselecte steekproef zijn Er mag evenwel niet geselecteerd worden voor Y. Eerste stap: spreidingsdiagramma Y heeft voor elke waarde van X een kansverdeling met als gemiddelde µ(x) Doel regressie-analyse: het maken van een schatting van µ(x) voor elke waarde van x µ(x) = alfa + beta.x alfa en beta worden geschat (a en b).

30 Introductie tot de lineaire regressie
Enkelvoudige lineaire regressie Stap 1: spreidingsdiagramma (scatterplot)

31 Introductie tot de lineaire regressie
Enkelvoudige lineaire regressie

32 Introductie tot de lineaire regressie
Enkelvoudige lineaire regressie Voor elke observatie is Y e (het residu) verwijderd van de verwachte waarde ei

33 Introductie tot de lineaire regressie
Enkelvoudige lineaire regressie Verwachte waarde van residu (e) = 0 Criterium: ‘kleinste kwadratencriterium’ (least squares) d.w.z. dat de som van de gekwadrateerde geschatte residuen minimaal is: Berekening van de richtingscoëfficient wordt dan: (de covariantie tussen X en Y gedeelt door de steekproefvariantie van X)

34 Introductie tot de lineaire regressie
Enkelvoudige lineaire regressie

35 Introductie tot de lineaire regressie
Enkelvoudige lineaire regressie

36 Introductie tot de lineaire regressie
Enkelvoudige lineaire regressie

37 Introductie tot de lineaire regressie
Relatie correlatie & lineaire regressie Als r nul is, is ook b nul

38 Introductie tot de lineaire regressie
Verklaarde variantie Hoe goed men Y kan voorspellen op basis van gemiddelde: hangt af van variabiliteit Bij gebruik X hangt de variabiliteit af van de variabiliteit van Y voor een gegeven waarde van X r² kan geïnterpreteerd worden als de relatieve reductie van de variabiliteit van Y door gebruik te maken van de regressie van Y op X r² x 100% is het percentage door X ‘verklaarde variantie’

39 Introductie tot de lineaire regressie
Enkelvoudige lineaire regressie

40 Introductie tot de lineaire regressie
Enkelvoudige lineaire regressie Voorwaarden: Lineariteit: de relatie tussen Y en X is lineair (som residuen 0) Gelijke varianties: de standaardafwijking van Y is voor alle waarden van X gelijk (variantie van e constant) Normaliteit: voor elke waarde van X volgt Y een normale verdeling (e normaal) Evaluatie: op basis van spreidingsdiagramma op basis van residuenplot

41 Multiple lineaire regressie
Inleiding: multiple regressie Meerdere onafhankelijke variabelen: Multiple of multivariate regressie ? Voorspellen Y of wegwerken verstoring ? Typeverdeling Y Regressiemodel normaal multiple lineaire regressie dichotoom multiple logistische regressie Poisson Poisson regressie overlevingsduurgegevens Cox proportionele hazard regressie

42 Multiple lineaire regressie
Veronderstelling: Y normaal verdeeld met gemiddelde: Verdeling X-en: geen eisen aselect, select, gestratificeerd… Y is wel aselect getrokken gegeven de waarden van de verschillende X-en Regressiecoëfficiënten: gemiddelde toename van Y bij de toename van één eenheid X. geeft de invloed van X weer, gecorrigeerd voor de andere X-en.

43 Multiple lineaire regressie
Alternatieve formulering: waarbij e een normaal verdeling volgt met als gemiddelde 0 en onbekende standaardafwijking sigma, die niet van de Xi’s afhangt. De regressiecoëfficiënten worden opnieuw geschat door gebruik te maken van het kleinste kwadratencriterium moet minimaal zijn. Schattingen (+ se (p-waarde) en betrouwbaarheidsintervallen): computerprogramma nodig

44 Multiple lineaire regressie
Voorbeeld Medisch onderzoeker heeft in een ontwikkelingsland uit enkele plattelandsdorpen 31 mensen willekeurig geselecteerd. Bij hen werd de systolische bloeddruk, het lichaamsgewicht, de leeftijd en de polsfrequentie gemeten. Aan de hand van een multiple regrssie wordt nagegaan hoe de systolische bloeddruk afhangt van gewicht, leeftijd en polsslag. afhankelijke variabele : Y (systolische bloeddruk in mm Hg) onafhankelijke variabelen : X1 (gewicht in kg) X2 (leeftijd in jaren) X3 (polsfrequentie in slagen/minuut)

45 Multiple lineaire regressie
Analyse: Eerst enkelvoudige regressies Onderlinge correlaties tussen X-en? Multiple lineaire regressie Schatten van de intercept en van de regressiecoëfficiënten kleinste kwadratencriterium computerprogramma nodig standaardfouten voor de coëfficiënten en p-waarde voor toetsing nul-hypothese (regressiecoëfficiënt = 0) Interpretatie cave: causaliteit?

46 Multiple lineaire regressie
Voorbeeld

47 Multiple lineaire regressie
Voorbeeld

48 Multiple lineaire regressie
Voorbeeld

49 Multiple lineaire regressie
Voorbeeld

50 Multiple lineaire regressie
Voorbeeld

51 Multiple lineaire regressie
Voorbeeld

52 Multiple lineaire regressie
Analyse: Variantieanalyse tabel afwijking yi t.o.v. gemiddelde y is de regressiecomponent + de residuele component kwadratensommen F-toets

53 Multiple lineaire regressie
Voorbeeld

54 Multiple lineaire regressie
Voorbeeld: diagnose van streptococcen keelontsteking gebaseerd op klinische bevindingen Prevalentie als een functie van het diagnostisch profiel Prev= (koorts) (inspectie) multiple lineaire regressie

55 Multiple lineaire regressie
Voorbeeld: diagnose van streptococcen keelontsteking gebaseerd op klinische bevindingen Prevalentie als een functie van het diagnostisch profiel Prev= (koorts) (inspectie) (inspectie)(koorts) interactieterm

56 Multiple lineaire regressie
Voorbeeld

57 Multiple lineaire regressie
Voorbeeld


Download ppt "Introductie tot de lineaire regressie"

Verwante presentaties


Ads door Google