Jo van den Brand HOVO: 13 november 2014

Slides:



Advertisements
Verwante presentaties
Jo van den Brand & Tjonnie Li 1 December, 2009 Structuur der Materie
Advertisements

Kosmologie 17 april 2014 prof Stan Bentvelsen en prof Jo van den Brand
§3.7 Krachten in het dagelijks leven
Jo van den Brand 10 November, 2009 Structuur der Materie
Newton - HAVO Energie en beweging Samenvatting.
College Fysisch Wereldbeeld versie 5
Natuurkunde V6: M.Prickaerts
FEW Cursus Gravitatie en kosmologie
Marcel Vonk Museum Boerhaave, 10 mei 2010
Physics of Fluids – 2e college
De large hadron collider: reis naar het middelpunt van het atoom
Les 5 Elektrische potentiaal in een elektrisch veld
Witte dwergen, Neutronensterren en Zwarte Gaten
J.W. van Holten Metius, Structuur en evolutie van de kosmos.
Verleden, heden en toekomst van ons absurde heelal
Newton - VWO Energie en beweging Samenvatting.

College Fysisch Wereldbeeld 2
Samenvatting Wet van Coulomb Elektrisch veld Wet van Gauss.
Late evolutiestadia van sterren
HOVO cursus Kosmologie Voorjaar 2011 prof.dr. Paul Groot dr. Gijs Nelemans Afdeling Sterrenkunde, Radboud Universiteit Nijmegen.
De Lijken van Sterren Paul Groot Afdeling Sterrenkunde, IMAPP
Het Relativistische Heelal prof.dr. Paul Groot Afdeling Sterrenkunde, IMAPP Radboud Universiteit Nijmegen.
HOVO cursus Kosmologie Voorjaar 2011
Alles uit (bijna) Niets
Ontstaan van het heelal
Rekenen met atomen De mol.
Relativiteitstheorie (4)
dr. H.J. Bulten Mechanica najaar 2007
dr. H.J. Bulten Mechanica najaar 2007
Gideon Koekoek 8 september 2009
Jo van den Brand Relativistische inflatie: 3 december 2012
Jo van den Brand Relativistische kosmologie: 26 november 2012
Verval van het Z-boson Presentatie: Els Koffeman
Large Hadron Collider subatomaire fysica Frank Linde (Nikhef), Het Baken, Almere, 26 april 2010, 12:00-13:00.
FEW Cursus Gravitatie en kosmologie Jo van den Brand & Jeroen Meidam
Jo van den Brand & Jeroen Meidam ART: 5 november 2012
Les 2 Elektrische velden
6. De Kosmologische Constante
Deeltjestheorie en straling
HOVO cursus Kosmologie Voorjaar 2011
HISPARC NAHSA Interactie van geladen deeltjes met stoffen Inleiding Leegte GROOT en klein.
Creativiteit in de kosmos: onze ultieme schatkamer
Jo van den Brand HOVO: 27 november 2014
Jo van den Brand Relativistische kosmologie: 1 december 2014
Nederlandse Organisatie voor Wetenschappelijk Onderzoek Alles en Niks VAN DE OERKNAL TOT HIGGS Niels Tuning Nieuwe Meer 26 okt 2014.
Algemene relativiteitstheorie
Jo van den Brand HOVO: 4 december 2014
Conceptversie.
Universiteit Leiden, Opleiding Natuur- en Sterrenkunde Botsingen.
Samenvatting Conceptversie.
Jo van den Brand HOVO: 27 november 2014
Hoge Energie Fysica Introductie in de experimentele hoge energie fysica Stan Bentvelsen NIKHEF Kruislaan SJ Amsterdam Kamer H250 – tel
Jo van den Brand & Joris van Heijningen Speciale relativiteitstheorie: 6 oktober 2015 Gravitatie en kosmologie FEW Cursus Copyright (C) Vrije Universiteit.
Nederlandse Organisatie voor Wetenschappelijk Onderzoek Alles en Niks VAN DE OERKNAL TOT HIGGS Niels Tuning Rotary Haarlemmermeerlanden 26 okt 2015.
Jo van den Brand Les 5: 3 december 2015
De grens van het waarneembare heelal Space Class Sonnenborgh 5 oct 2010 John Heise, Universiteit Utrecht SRON-Ruimteonderzoek Nederland.
Jo van den Brand & Joris van Heijningen Sferische oplossingen: 10 November 2015 Gravitatie en kosmologie FEW cursus Copyright (C) Vrije Universiteit 2009.
het Multiversum een heelal gevuld met andere werelden
Kosmologie Het is maar hoe je het bekijkt... Marcel Haas, Winterkamp 2006.
Jo van den Brand Relativistische kosmologie: 24 november 2014
Energie in het elektrisch veld
Herhaling Hoofdstuk 4: Breking
Vorige keer: Hoe weten we dit allemaal? Wordt alles steeds complexer?
Rekenen met atomen De mol.
FEW Cursus Gravitatie en kosmologie
Prof.dr. A. Achterberg, IMAPP
Jo van den Brand HOVO: 6 november 2014
Newtoniaanse Kosmologie College 7: Inflatie
Newtoniaanse Kosmologie College 8: deeltjesfysica en het vroege heelal
Transcript van de presentatie:

Jo van den Brand HOVO: 13 november 2014 Thermodynamica rol in de moderne fysica   Jo van den Brand HOVO: 13 november 2014 jo@nikhef.nl

Inhoud Kosmologie Thermodynamica Nucleosynthese Standaard zonnemodel Algemene relativiteitstheorie Kosmologie en Big Bang Roodverschuiving Thermodynamica Fase-overgangen (entropie) Nucleosynthese Big Bang en synthese in sterren Abondantie van helium-4 Standaard zonnemodel Temperatuur in de zon Kosmische microgolf-achtergrondstraling Temperatuur en fluctuaties Najaar 2009 Jo van den Brand

Energiedichtheid in heelal Heelal bestaat uit koude materie: atomen, molekulen, aarde, sterren, donkere materie, etc. straling: fotonen van sterren, fotonen van CMB, neutrino’s, etc. kosmologische constante: donkere energie, vacuum energie, quintessence veld, etc. Voor elk van deze soorten energie en materie geldt dat er een verband tussen energiedichtheid en druk bestaat Toestandsvergelijking volgt uit friedmannvergelijkingen Energiedichtheid: energie gedeeld door fysisch volume Fysisch volume bepaald door Koude materie Hoeveelheid materie constant (= A) en wordt niet omgezet naar andere soorten energie Straling Extra afname t.g.v. kosmologische roodverschuiving evenredig met schaalfactor Kosmologische constante Neemt niet af tijdens uitdijen of krimpen van heelal

Heelal gedomineerd door koude materie Bepaal constante n differentieer 1e FV invullen in 2e FV n = 0, P = 0 Er geldt Hieruit volgt ook direct en

Heelal gedomineerd door straling n = 1/3 en dus Er geldt Hieruit volgt ook direct en Uitdijing van een stralingsgedomineerd heelal gaat sneller

Heelal gedomineerd door L Kosmologische constante Voor normale straling en materie neemt dichtheid af als energie over groter volume wordt uitgesmeerd Eigenschap van ruimtetijd zelf (driekwart van alle energie is van deze vorm!) Friedmannvergelijkingen leveren n = -1 Druk is negatief!!! Er geldt Uitdijing is exponentieel en verloopt steeds sneller

Friedmannvergelijkingen Friedmann – Lemaitre – Robertson – Walker metriek. Er geldt Einsteinvergelijkingen geven friedmannvergelijkingen Zonder kosmologische constante wordt FV - 1 Kritische dichtheid: voor gegeven H de dichtheid waarvoor k = 0 10-26 kg m-3 Dichtheid / kritische dichtheid: 

Kritische dichtheid Beschouw een testdeeltje m en bereken de ontsnappingssnelheid Behoud van energie volgens Newton Beschouw een bolvormig volume van het heelal dat expandeert met Massa binnen dit volume Het deeltje zal net ontsnapping als r de kritische dichtheid is Daarvoor geldt Hetzelfde resultaat vonden we met de algemene relativiteitstheorie Invullen van H0 en G levert Met definitie

Friedmannvergelijkingen Friedmannvergelijking 1 kan herschreven worden Rechts staan enkel constanten. Tijdens expansie neemt dichtheid af (~a3) Sinds Planck era is de ra2 met factor 1060 afgenomen (-1 – 1 ) moet met factor 1060 zijn toegenomen Planck en Sloan Digital Sky Survey stellen 0 op 1 binnen 1% Dan is | -1 - 1 | < 0.01 en tijdens Planck era kleiner dan 10-62 Vlakheidsprobleem: waarom was de initiële dichtheid van het Heelal zo dicht bij de kritische dichtheid? Oplossingen: Anthropisch principe of inflatie (ra2 neemt snel toe in korte tijd)

Evolutie van het heelal Friedmannvergelijking Herschrijven als Er geldt Leeftijd van het heelal

Evolutie van het heelal We vinden: t = t(z) a = a(t) We weten: 1 + z = 1/a De figuur toont enkele voorbeelden

Afstanden in FLRW metriek Meebewegende afstand  Emissie: t1 Nu: t0 Er geldt: Neem aan dat we de absolute helderheid L van een bron kennen (standaardkaars) In euclidische ruimte geldt voor de waargenomen flux In FLRW ruimte gelden de volgende modificaties: We vinden helderheidsafstand dL

Supernovae Type IA Supernovae Type IA zijn standaardkaarsen

Supernovae Type IA Supernovae Type IA zijn standaardkaarsen Nobelprijs 2011

Standaardmodel van de kosmologie Evolutie heelal voor vlakke FRW model. Aanname: energie gelijk verdeeld over straling, materie en vacuum Conclusies LCDM model

Continuiteitsvergelijking Beschouw klein “vloeistofelement” Massastroom door linkervlak Massastroom door rechtervlak (gebruik Taylor-expansie Combineer alle vlakken Gebruik de divergentie-operator Dit is de continuiteitsvergelijking: als de dichtheid in het element verandert, dan stroomt er vloeistof door de wanden van het element

Vergelijking van Euler P(x) P(x+dx) P(z+dz) P(y) P(z) P(y+dy) Beschouw kracht op een “vloeistofelement” Kracht op linkervlak Druk op rechtervlak (gebruik Taylor-expansie) Schrijf druk als We vinden Tweede wet van Newton Kettingregel Wet van Euler Dit geeft de versnelling van een vloeistofelement door krachten ten gevolge van drukverschillen

Een klassiek heelal Neem aan dat we te maken hebben met een klassiek heelal dat bestaat uit “stof” Stof heeft uniforme dichtheid Het heelal ondergaat uniforme expansie (met c de beginpositie) Dan geldt met Hubble parameter De continuiteitsvergelijking Hieruit volgt Integreren levert In relatie tussen huidige waarde, vinden we De vergelijking van Euler (met F de kracht per massa-eenheid) Met Er geldt Net als friedmannvergelijkingen

Een klassiek heelal Voor klassiek heelal dat bestaat uit “stof” Gebruik We vinden Vermenigvuldig met en integreer integratieconstante Beschouw dit als een vergelijking voor de energie van het heelal Kinetische energie Totale energie: k = -1, 0, of 1 (friedmann) Potentiele energie

Thermodynamica van het vroege heelal

Druk Beschouw gas met deeltjesdichtheid n = N/V in denkbeeldige doos Druk: hoeveelheid impuls die per second een oppervlakte-element dA met normaalvector n passeert Beschouw wand met n in positieve x-richting met oppervlak A Druk Stel: alle deeltjes bewegen in x-richting met impuls In tijd dt botsen deeltjes in volume met de wand Dat zijn deeltjes Impulsoverdracht per botsing Totale impulsoverdracht Druk is dan Voor isotrope verdeling beweegt gemiddeld 1/6-deel in de positieve x-richting In het algemeen hebben deeltjes een impulsverdeling n(p)

Druk en dichtheid Druk van een gas Niet-relativistische deeltjes: Dit levert Druk is evenredig met de kinetische energiedichtheid Voor ultra-relativistische deeltjes: Dit levert Druk is evenredig met de energiedichtheid Bijvoorbeeld fotonen Algemeen geldige relaties: onafhankelijk van de impulsverdeling

Toestandsvergelijkingen Toestandvergelijking constante Niet-relativistische materie: r wordt gedomineerd door rustmassa mc2 >> P Vloeistof is dan drukloos: a = 0 We noemen dit stof (“dust”) Voor straling geldt en a = 1/3 Voor vacuum-energie en dus a = -1 Continuiteitsvergelijking en Invullen levert We vinden weer voor straling en materie

Tijdsevolutie schaalfactor Friedmannvergelijkingen leveren Ansatz We vinden Voor een door straling gedomineerd heelal vinden we Voor materie gedomineerd In beide gevallen Kosmologische constante levert Het is niet mogelijk een analytische oplossing te geven voor een willekeurig mengsel van materie, straling en vacuumenergie

Intermezzo: evenwichtsthermodynamica Beschouw ijl mengsel van deeltjes van soort i Bezettingsgraad van toestanden temperatuur chemische potentiaal energie Bose-Einstein statistiek min-teken, Fermi-Dirac plus-teken Quantumtoestanden: beschouw deeltjes in een “doos” Dit levert Dichtheid van toestanden (# / ) is statistisch gewicht Deeltjesdichtheid tussen p en p + dp is Totale deeltjesdichtheid

Intermezzo: gas bij relatief lage T Beschouw gas met Dan geldt Deeltjesdichtheid is dan We vinden Evenzo vinden we voor de druk

Intermezzo: gas bij relatief lage T Deeltjesdichtheid Druk Dit is de toestandsvergelijking voor een ideaal gas Interpretatie: beschouw quantumconcentratie Deeltje met energie De Broglie golflengte Als de gemiddelde afstand groter is dan de De Broglie golflengte, gedragen ze zich als klassieke puntdeeltjes

Druk voor een fermion/boson gas Deeltjesdichtheid Energiedichtheid Druk Ultra-relativistische benadering Gemiddelde energie r/n per relativistisch deeltje Fotongas heeft energiedichtheid

Vrijheidsgraden Energiedichtheid en druk telt het aantal vrijheidsgraden Standaard model van de deeltjesfysica Modelafhankelijk boven 1 TeV Neutrino’s hebben andere T dan fotonen Definieer Friedmannvergelijking Straling

Historie van het heelal Fase-overgangen treden op bij bepaalde temperaturen

Historie van het heelal

Elektrozwakke overgang Het Higgs-veld Bij hoge temperaturen zijn deeltjes massaloos Na 10-23 s vervallen top-quark, W, Z en H bosonen Voor tijden met kunnen deze deeltjes niet meer gecreeerd worden: de EZ transitie We kunnen uitrekenen wanneer dit gebeurt (gebruik T = mHiggs/6) We vinden 20 ps na de Big Bang We vinden de roodverschuiving uit huidige temperatuur is 2.7 K We kunnen ook uitrekenen hoe groot de schaalfactor toen was, want 1 + z = 1/a

QCD fase-overgang Bij 150 MeV ondergaat materie de QCD fase-transitie Vrije quarks raken gebonden in hadronen Aantal vrijheidsgraden verandert pionen fotonen Treedt op 20 us na de Big Bang, bij z = 1012 ALICE experiment bij LHC: r en P (lattice QCD)