∙ ∙ f(x) = axn is een machtsfunctie O n even n oneven y y y y a > 0

Slides:



Advertisements
Verwante presentaties
havo B Samenvatting Hoofdstuk 6
Advertisements

havo A Samenvatting Hoofdstuk 10
havo A Samenvatting Hoofdstuk 7
dy dx De afgeleide is de snelheid waarmee y verandert voor x = xA
Stijgen en dalen constante stijging toenemende stijging
y is evenredig met x voorbeeld a N x 5 x 3
Samenvatting H29 Parabolen
vwo A/C Samenvatting Hoofdstuk 2
vwo C Samenvatting Hoofdstuk 13
vwo C Samenvatting Hoofdstuk 11
havo B Samenvatting Hoofdstuk 11
vwo B Samenvatting Hoofdstuk 9
horizontale lijn a = 0  y = getal
vwo B Samenvatting Hoofdstuk 2
vwo B Samenvatting Hoofdstuk 1
vwo A/C Samenvatting Hoofdstuk 5
vwo A Samenvatting Hoofdstuk10
vwo B Samenvatting Hoofdstuk 7
vwo B Samenvatting Hoofdstuk 5
vwo A Samenvatting Hoofdstuk 14
Regels voor het vermenigvuldigen
Riemannsommen De oppervlakte van het vlakdeel V in figuur a is
De grafiek van een lineair verband is ALTIJD een rechte lijn.
De grafiek van een machtsfunctie
Rekenregels van machten
Lineaire functies y is een lineaire functie van x betekent y = ax + b
machtsfuncties n even n oneven y y y y a > 0 a < 0 a > 0
Wortels x² = 10 x = √10 v x = -√10 kwadrateren is hetzelfde als tot de tweede macht verheffen √10 = 2√10 √10 = 10 √10 ≈ 3,16 (√10)² = 10 daarom heet.
Kwadratische vergelijkingen
havo A Samenvatting Hoofdstuk 10
Machten en logaritmen Een stukje geschiedenis
Lineaire functies Lineaire functie
Twee soorten groei opgave 6 aN = 9,8 · 1,045 t binvullen t = 6 N = 9,8 · 1,045 6 ≈ 12,8 miljoen. cLos op : 9,8 · 1,045 t = 16 voer in y 1 = 9,8.
De grafiek van een lineair verband is ALTIJD een rechte lijn.
Formules en de GR Met de GR kun je bijzonderheden van formules te weten komen. Eerst plot je de grafiek. Gebruik eventueel de optie ZoomFit (TI) of Auto.
Differentieer regels De afgeleide van een functie f is volgens de limietdefinitie: Meestal bepaal je de afgeleide niet met deze limietdefinitie, maar.
De grafiek van een lineair verband is ALTIJD een rechte lijn.
Differentieer regels De afgeleide van een functie f is volgens de limietdefinitie: Meestal bepaal je de afgeleide niet met deze limietdefinitie, maar.
De standaardfunctie f(x) = gx
Asymptoot is een lijn waar de grafiek op den duur mee samenvalt.
Lineaire vergelijkingen
Differentieer regels De afgeleide van een functie f is volgens de limietdefinitie: Meestal bepaal je de afgeleide niet met deze limietdefinitie, maar.
Buigpunt en buigraaklijn
1 het type x² = getal 2 ontbinden in factoren 3 de abc-formule
havo B Samenvatting Hoofdstuk 5
ribwis1 Toegepaste wiskunde – Exponentiele functies Lesweek 6
ribwis1 Toegepaste wiskunde Lesweek 2
ribwis1 Toegepaste wiskunde – Exponentiele functies Lesweek 5
ribwis1 Toegepaste wiskunde, ribPWI Lesweek 01
ribwis1 Toegepaste wiskunde – Differentieren Lesweek 7
Havo D deel 3 Samenvatting Hoofdstuk 11. x 2 y is (recht) evenredig met x De formule heeft de vorm y = ax De tabel is een verhoudingstabel. Bij een k.
havo D deel 3 Samenvatting Hoofdstuk 12
havo A Samenvatting Hoofdstuk 3
havo B Samenvatting Hoofdstuk 9
havo D deel 3 Samenvatting Hoofdstuk 10
Vwo C Samenvatting Hoofdstuk 15. Formules en de GR Met de GR kun je bijzonderheden van formules te weten komen. Eerst plot je de grafiek. Gebruik eventueel.
havo B 9.4 Transformaties en formules
havo B 5.1 Stelsels vergelijkingen
havo B Samenvatting Hoofdstuk 1
Verbanden JTC’07.
Regels voor het vermenigvuldigen
Functies, vergelijkingen, ongelijkheden
Differentieer regels De afgeleide van een functie f is volgens de limietdefinitie: Meestal bepaal je de afgeleide niet met deze limietdefinitie, maar.
havo B Samenvatting Hoofdstuk 3
havo B Samenvatting Hoofdstuk 7
havo A Samenvatting Hoofdstuk 10
Transformaties van grafieken
De grafiek van een lineair verband is ALTIJD een rechte lijn.
havo B Samenvatting Hoofdstuk 1
havo B Samenvatting Hoofdstuk 3
Transcript van de presentatie:

∙ ∙ f(x) = axn is een machtsfunctie O n even n oneven y y y y a > 0 lijnsymmetrisch met de y-as puntsymmetrisch met (0, 0) 11.1

Grafieken van machtsfuncties verschuiven xtop bereken je door wat tussen haakjes staat 0 te maken. y y = x² top (0, 0) y = ( x – 4 )² 4 naar rechts top (4, 0) y = ( x – 4 )² + 3 3 omhoog top (4, 3) y = 2 ( x – 4 )² + 3 parabool smaller top hetzelfde y = a ( x - p )² + q top (p, q) <a href="partrans.html" target = "geoframe">para. trans</a> O x algemeen grafiek van translatie (p, q) beeldgrafiek y = axn  y = a(x – p)n + q 11.1

Welk functievoorschrift hoort bij de verschillende parabolen ?

voorbeeld a y = 0,3x4 y = 0,3(x + 5)4 + 6 y = -0,9(x + 5)4 - 18 top (-5, -18) b y = 0,3x4 y = -0,9x4 y = -0,9(x + 5)4 + 6 top (-5, 6) Bij de translatie (-5, 6) vervang je in de formule x door x + 5 en tel je 6 bij de functiewaarde op. translatie (-5, 6) verm. met -3 tov de x-as Bij de vermenigvuldiging t.o.v. de x-as met -3, vermenigvuldig je de functiewaarde met -3. verm. met -3 tov de x-as translatie (-5, 6) 11.1

Los op (exact) x² < 2x + 3 f(x) = x² g(x) = 2x + 3 f(x) = g(x) x = -1 v x = 3 aflezen uit de schets -1 < x < 3 Werkschema :het oplossen van de ongelijkheid Schets de grafieken van f en g. Los de vergelijking f(x) = g(x) op. Lees uit de schets de oplossingen af. y f Lees het antwoord af op de x-as f(x) < g(x) wanneer ligt de grafiek van f onder die van g. -1 3 x g 11.1

Werkschema: het tekenen van de grafiek van een wortelfunctie Bereken het domein en de coördinaten van het beginpunt. Maak een tabel. Teken de grafiek. Werkschema: het oplossen van wortelvergelijkingen Maak de wortel vrij. Kwadrateer het linker- en rechterlid en los de verkregen vergelijking op. Controleer of de oplossingen van de gekwadrateerde vergelijking oplossingen zijn van de gegeven vergelijking. 11.2

∙ opgave 21e y m(x) = √(x - 1) - 1 beginpunt (1, -1) Dm = [ 1,  > Bm = [ -1,  > 1 x -1 1 ∙ -1

∙ opgave 24a y f(x) = √(x + 5) + 3 beginpunt (-5, 3) Df = [ -5,  > Bf = [ 3,  > ∙ 3 1 x -5 -1 1

Wanneer ligt de grafiek van f onder die van g ? opgave 26 y 2x + 3 ≥ 0 2x ≥ -3 x ≥ -1½ Df = [-1½ ,  > 4 g 3 Wanneer ligt de grafiek van f onder die van g ? a f(x) = -2 + √(2x + 3) beginpunt ( -1½ , -2) b Bf = [ -2,  > c f(x) < g(x) voer in y1 = -2 + √(2x + 3) en y2 = -0,5x + 2 optie intersect x ≈ 2,41 -1½ ≤ x < 2,41 ∙ 2 1 -1,5 ∙ x -2 -1 1 2 2,41 3 4 -1 f ∙ -2

Wortelvergelijkingen oplossen voorbeeld 2x + √x = 10 √x = 10 – 2x x = (10 – 2x)2 x = 100 – 40x + 4x2 -4x2 + 40x + x – 100 = 0 -4x2 + 41x – 100 = 0 D = (41)2 – 4 · -4 · -100 D = 81 x = x = 6¼ v x = 4 Isoleer de wortelvorm. Kwadrateer het linker- en het rechterlid. Los de vergelijking op. -41 ± √81 -8 Controleer of de oplossingen kloppen. voldoet niet voldoet 11.2

∙ ∙ Asymptoten y 4 1x f (x) = standaardfunctie De grafiek heet een hyperbool. f (0) bestaat niet. Je hebt een horizontale asymptoot en een verticale asymptoot. Een asymptoot is een lijn waarmee de grafiek op den duur vrijwel mee samenvalt. 3 2 ∙ 1 y = 0 -2 -1 1 2 3 x ∙ -1 -2 x = 0 11.3

Transformaties en gebroken functies y 1x f(x) = standaardfunctie g(x) = + 1 translatie 2 naar rechts 1 omhoog 4 1 x - 2 3 ∙ 2 ∙ y = 1 1 ∙ y = 0 -2 -1 1 2 3 x ∙ -1 -2 x = 0 x = 2 11.3

opgave 40a y 8 2x - 4 x + 3 f(x) = noemer = 0 x + 3 = 0  x = -3 vert.asymptoot noemer = 0 horz.asymptoot voor grote x 8 2x - 4 x + 3 f(x) = noemer = 0 x + 3 = 0  x = -3 vert.asymptoot : x = -3 voor grote x is f(x) ≈ 2x/x = 2 horz.asymptoot : y = 2 6 f 4 2 y = 2 f x -8 -6 -4 -2 2 4 -2 -4 x = -3

Gebroken vergelijkingen Regels voor het algebraïsch oplossen van gebroken vergelijkingen = 0 geeft A = 0 = geeft A = C = geeft A = 0 v B = C = geeft AD = BC A B 0 1 = 0 = kan niet een breuk is nul als de teller nul is en de noemer niet A B C B 1 0 A B A C 0 0 A B C D 0 5 Controleer of geen noemer nul wordt. 11.3

horizontale symptoot: N = 1800 opgave 48 a t = 100 geeft N ≈ 1796 t = 1000 geeft N ≈ 1799,6 horizontale symptoot: N = 1800 Dit betekent dat N niet boven 1800 uitkomt. b Voer in y1 = 1800 – 1200/(1 + 3x) en y2 = 1760. Optie intersect geeft x ≈ 9,67. Dus op 10 mei zijn er 1760 insecten. c 4 mei loopt van t = 3 tot t = 4 t = 4 geeft N = 1708 t = 3 geeft N = 1680 1708 – 1680 = 28 insecten d N = 1680 hoort bij t = 3 (zie vraag c) N = 1745 hoort bij t = 7 (zie tabel op de GR) Het duurt dus 7 – 3 = 4 dagen. N 2000 N =1800 1000 600 1 2 t

Formules met twee variabelen opgave 50 a L = b v2 = 1300 v ≈ 36 Dus met een snelheid van 36 km/uur. c v = 30 geeft L = Los op 36 = 12f f = 3

Asymptoot is een lijn waar de grafiek op den duur mee samenvalt. De grafiek van f(x) = gx f(x) = gx met g constant en g > 0 is een exponentiële functie g > 1 0 < g < 1 y y Asymptoot is een lijn waar de grafiek op den duur mee samenvalt. 1 1 x x O O De grafiek is stijgend bereik 〈 0, 〉 de x-as is asymptoot De grafiek is dalend bereik 〈 0, 〉 de x-as is asymptoot 11.4

Het effect van transformaties op y = gx verm. t.o.v. de x-as met a y = a · gx Vermenigvuldig in de formule de functiewaarde met a. De asymptoot is y = 0. y = gx translatie (p, 0) y = gx – p Vervang in de formule x door x – p. De asymptoot is y = 0. y = gx translatie (0, q) y = gx + q Tel in de formule q op bij de functiewaarde. De asymptoot is y = q. 11.4

opgave 60 a f: y = 2x translatie (0, -2) y = 2x – 2 de asymptoot van f is y = -2 y f 4 3 g g: y = (½)x translatie (2, 2) y = (½)x - 2 + 2 de asymptoot van g is y = 2 2,25 2 y = 2 1 b Bf = 〈 -2,  〉 Bg = 〈 2,  〉 c g(4) = 2,25 x ≥ 4 geeft 2 < g(x) ≤ 2,25 d Optie intersect geeft x ≈ 2,27. f(x) ≤ g(x) x ≤ 2,27 -3 -2 -1 O 1 2 2,27 3 4 x -1 y = -2 -2 -3

Rekenregels voor machten 11.4

opgave 67a 23x + 5 = 16√2 23x + 5 = 24 · 2½ 23x + 5 = 24½ 3x + 5 = 4½ 3x = 4½ - 5 3x = -½ x = -⅙

Soorten groei 11.4

h t opgave 69 a b t = 3 geeft = 52 Dus 52 cm hoog. t = 11 geeft = 256 Na 11 weken is de zonnebloem 256 cm hoog. c Voer in y1 = 260/(1 + 32 · 0,5x) d Voer in y2 = 250. Optie intersect geeft x ≈ 9,64. Dus vanaf t = 9,7. af af toe h h = 260 3 250 11 t 9,64

N t opgave 71 N = 1200(1 – 0,7t ) a De asymptoot is N = 1200 Er zitten 1200 leerlingen op school. b Voer in y1 = 1200(1 – 0,7x ) c Tabel De quotiënten zijn niet gelijk, dus er is geen exponentiële groei. d Voer in y2 = 950 Optie intersect geeft x ≈ 4,398. 0,398 · 60 ≈ 24 Dus om 13.00 uur + 24 minuten = 13.24 uur. 950 t 1 2 3 4 N 360 612 788 912 t 4,398 360/0 = k.n. , 612/360 = 1,7, 788/612 ≈ 1,3, 912/788 ≈ 1,2