vwo A Samenvatting Hoofdstuk10

Slides:



Advertisements
Verwante presentaties
Gelijkmatige toename en afname
Advertisements

havo B Samenvatting Hoofdstuk 6
havo A Samenvatting Hoofdstuk 10
havo A Samenvatting Hoofdstuk 7
dy dx De afgeleide is de snelheid waarmee y verandert voor x = xA
y is evenredig met x voorbeeld a N x 5 x 3
Samenvatting H29 Parabolen
vwo A/C Samenvatting Hoofdstuk 2
vwo C Samenvatting Hoofdstuk 13
vwo C Samenvatting Hoofdstuk 11
havo B Samenvatting Hoofdstuk 11
vwo B Samenvatting Hoofdstuk 9
Overzicht van de leerstof
horizontale lijn a = 0  y = getal
vwo B Samenvatting Hoofdstuk 2
vwo B Samenvatting Hoofdstuk 1
vwo A/C Samenvatting Hoofdstuk 5
vwo A/C Samenvatting Hoofdstuk 7
vwo B Samenvatting Hoofdstuk 7
vwo B Samenvatting Hoofdstuk 5
vwo A Samenvatting Hoofdstuk 12
vwo A Samenvatting Hoofdstuk 16
vwo A Samenvatting Hoofdstuk 14
vwo B Samenvatting Hoofdstuk 13
De grafiek van een lineair verband is ALTIJD een rechte lijn.
De grafiek van een machtsfunctie
Rekenregels van machten
Lineaire functies y is een lineaire functie van x betekent y = ax + b
machtsfuncties n even n oneven y y y y a > 0 a < 0 a > 0
Kwadratische vergelijkingen
∙ ∙ f(x) = axn is een machtsfunctie O n even n oneven y y y y a > 0
Machten en logaritmen Een stukje geschiedenis
Lineaire functies Lineaire functie
Twee soorten groei opgave 6 aN = 9,8 · 1,045 t binvullen t = 6 N = 9,8 · 1,045 6 ≈ 12,8 miljoen. cLos op : 9,8 · 1,045 t = 16 voer in y 1 = 9,8.
De grafiek van een lineair verband is ALTIJD een rechte lijn.
Differentieer regels De afgeleide van een functie f is volgens de limietdefinitie: Meestal bepaal je de afgeleide niet met deze limietdefinitie, maar.
De standaardfunctie f(x) = gx
Asymptoot is een lijn waar de grafiek op den duur mee samenvalt.
Lineaire vergelijkingen
Differentieer regels De afgeleide van een functie f is volgens de limietdefinitie: Meestal bepaal je de afgeleide niet met deze limietdefinitie, maar.
1 het type x² = getal 2 ontbinden in factoren 3 de abc-formule
ribwis1 Toegepaste wiskunde – Exponentiele functies Lesweek 6
ribwis1 Toegepaste wiskunde Lesweek 2
ribwis1 Toegepaste wiskunde – Exponentiele functies Lesweek 5
WIS21.
Havo D deel 3 Samenvatting Hoofdstuk 11. x 2 y is (recht) evenredig met x De formule heeft de vorm y = ax De tabel is een verhoudingstabel. Bij een k.
havo A Samenvatting Hoofdstuk 3
havo B Samenvatting Hoofdstuk 9
vwo D Samenvatting Hoofdstuk 12
havo D deel 3 Samenvatting Hoofdstuk 10
Vwo C Samenvatting Hoofdstuk 15. Formules en de GR Met de GR kun je bijzonderheden van formules te weten komen. Eerst plot je de grafiek. Gebruik eventueel.
havo B 9.4 Transformaties en formules
havo B Machten en logaritmen
havo B 5.1 Stelsels vergelijkingen
havo B Samenvatting Hoofdstuk 1
Vergelijkingen oplossen
Verbanden JTC’07.
Functies, vergelijkingen, ongelijkheden
Differentieer regels De afgeleide van een functie f is volgens de limietdefinitie: Meestal bepaal je de afgeleide niet met deze limietdefinitie, maar.
havo B Samenvatting Hoofdstuk 3
havo B Samenvatting Hoofdstuk 7
Hoofdstuk 3 Lineaire formules en vergelijkingen
havo A Samenvatting Hoofdstuk 10
Transformaties van grafieken
3 vmbo-KGT Samenvatting Hoofdstuk 6
De grafiek van een lineair verband is ALTIJD een rechte lijn.
3 vmbo-KGT Samenvatting Hoofdstuk 10
havo B Samenvatting Hoofdstuk 1
havo B Samenvatting Hoofdstuk 3
Exponentiële en logaritmische functies
Transcript van de presentatie:

vwo A Samenvatting Hoofdstuk10

machtsfuncties n even n oneven y y y y a > 0 a < 0 a > 0 x x x x O O O O de top is (0,0) het punt van symmetrie is (0,0) 10.1

Grafieken van machtsfuncties verschuiven xtop bereken je door wat tussen haakjes staat 0 te maken. y y = x² top (0, 0) y = ( x – 4 )² 4 naar rechts top (4, 0) y = ( x – 4 )² + 3 3 omhoog top (4,3) y = 2 ( x – 4 )² + 3 parabool smaller top hetzelfde top (4, 3) y = a ( x - p )² + q top (p, q) O x algemeen grafiek van translatie (p, q) beeldgrafiek y = axn  y = a(x – p)n + q 10.1

los op (exact) x² < 2x + 3 f(x) = x² g(x) = 2x + 3 f(x) = g(x) x = -1 v x = 3 aflezen uit de schets -1 < x < 3 Werkschema bij het oplossen van ongelijkheden Schets de grafieken van f en g. Los de vergelijking f(x) = g(x) op. Lees uit de schets de oplossingen af. y f Lees het antwoord af op de x-as f(x) < g(x) wanneer ligt de grafiek van f onder die van g. -1 3 x g 10.1

Werkschema: het tekenen van de grafiek van een wortelfunctie Bereken het domein en de coördinaten van het beginpunt. Maak een tabel. Teken de grafiek. Werkschema: het oplossen van wortelvergelijkingen Maak de wortel vrij. Kwadrateer het linker- en rechterlid en los de verkregen vergelijking op. Controleer of de oplossingen van de gekwadrateerde vergelijking oplossingen zijn van de gegeven vergelijking. 10.2

Wanneer ligt de grafiek van f onder die van g ? opgave 23 y 2x + 3 ≥ 0 2x ≥ -3 x ≥ -1½ 4 g 3 Wanneer ligt de grafiek van f onder die van g ? a) f(x) = -2 + √(2x + 3) beginpunt ( -1½ , -2) b) Bf = [ -2 ,  > c) f(x) < g(x) voer in y1 = -2 + √(2x + 3) en y2 = -0,5x + 2 x ≈ 2,41 -1½ ≤ x < 2,41 ∙ 2 1 -1,5 ∙ x -2 -1 1 2 2,41 3 4 -1 f ∙ -2 10.2

Wortelvergelijkingen oplossen voorbeeld 2x + √x = 10 √x = 10 – 2x x = (10 – 2x)2 x = 100 – 40x + 4x2 -4x2 + 40x + x – 100 = 0 -4x2 + 41x – 100 = 0 D = (41)2 – 4 · -4 · -100 D = 81 x = x = 6¼ v x = 4 Isoleer de wortelvorm. Kwadrateer het linker- en het rechterlid. Los de vergelijking op. -41 ± √81 -8 Controleer of de oplossingen kloppen. voldoet niet voldoet 10.2

∙ ∙ Asymptoten y 4 1x f (x) = standaardfunctie De grafiek heet een hyperbool. f (0) bestaat niet. Je hebt een horizontale asymptoot en een verticale asymptoot. Een asymptoot is een lijn waarmee de grafiek op den duur vrijwel mee samenvalt. 3 2 ∙ 1 y = 0 -2 -1 1 2 3 x ∙ -1 -2 x = 0 10.3

Transformaties en gebroken functies y 1x f(x) = standaardfunctie g(x) = + 1 translatie 2 naar rechts 1 omhoog 4 1 x - 2 3 ∙ 2 ∙ y = 1 1 ∙ y = 0 -2 -1 1 2 3 x ∙ -1 -2 x = 0 x = 2 10.3

Gebroken vergelijkingen Regels voor het algebraïsch oplossen van gebroken vergelijkingen = 0 geeft A = 0 = geeft A = C = geeft A = 0 v B = C = geeft AD = BC A B 0 1 = 0 = kan niet een breuk is nul als de teller nul is en de noemer niet A B C B 1 0 A B A C 0 0 A B C D 0 5 Controleer of geen noemer nul wordt. 10.3

Asymptoot is een lijn waar de grafiek op den duur mee samenvalt. De grafiek van f(x) = gx f(x) = gx met g constant en g > 0 is een exponentiële functie g > 1 0 < g < 1 y y Asymptoot is een lijn waar de grafiek op den duur mee samenvalt. 1 1 x x O O De grafiek is stijgend bereik < 0, > de x-as is asymptoot De grafiek is dalend bereik < 0, > de x-as is asymptoot 10.4

Het effect van transformaties op y = gx verm. t.o.v. de x-as met a y = a · gx Vermenigvuldig in de formule de functiewaarde met a. De asymptoot is y = 0. y = gx translatie (p, 0) y = gx – p Vervang in de formule x door x – p. De asymptoot is y = 0. y = gx translatie (0, q) y = gx + q Tel in de formule q op bij de functiewaarde. De asymptoot is y = q. 10.4

Rekenregels voor machten 10.4

Logaritme en exponent 2x = 8 x = 3 want 23 = 8 2x = 8 ⇔ 2log(8) 2log(32) = 5 want 25 = 32 algemeen : glog(x) = y betekent gy = x dus glog(gy) = y x > 0 , g > 0 en g ≠ 1 10.5

De standaardgrafiek y = glog(x) 1 1 dalend stijgend domein < 0,  > de y-as (x = 0) is asymptoot 10.5

Grafieken van logaritmische functies Het beeld van y = glog(x) bij enkele transformaties transformatie formule beeldgrafiek domein formule asymptoot translatie (0, q) y = glog(x) + q < 0,  > x = 0 translatie (p, 0) y = glog(x – p) < p,  > x = p verm. x-as, a y = a · glog(x) Werkschema: het tekenen van de grafiek van een logaritmische functie Stel de formule op van de verticale asymptoot. Maak een tabel. Teken de grafiek. 10.5

voorbeeld 1 x = 4 y a) Hoe ontstaat f(x) = 3log(x – 4) + 2 uit y = 3log(x) ? y = 3log(x) translatie (4, 0) y = 3log(x – 4) translatie (0, 2) y = 3log(x – 4) + 2 b) Df = < 4, > 4 3 2  1   x   1 3 9 3log(x) -2 -1 1 2    O 1 2 3 4 5 -1 2 omhoog   4 naar rechts -2   10.5

Rekenregels voor logaritmen Werkschema: het oplossen van logaritmische vergelijkingen 1. Kijk of je kunt toepassen glog(x) = y geeft x = gy. Lukt dat niet, dan Herleid het linker- en rechterlid tot logaritmen met hetzelfde grondtal. Gebruik daarna glog(A) = glog(B) geeft A = B. 10.6

Logaritmische schaalverdeling Een gewone schaalverdeling is niet praktisch als je op een getallenlijn gegevens wilt uitzetten die sterk in grootte verschillen. We kiezen in zo’n situatie liever een logaritmische schaalverdeling. paard = 600 kg. log(600) ≈ 2,8 Op de logaritmische schaalverdeling is de afstand van 104 tot 100 gelijk aan 4 log(104) = 4 10.7

Logaritmisch papier 107 F  2400 F  2400000 opgave 84 106 E  150 D  55 D  55000 105 C  23 C  23000 B  7500 B  7,5 104 A  1300 A  1,3 10.7 103

Rechte lijn op logaritmisch papier, dus N = b · gt. t = 1 en N = 30 opgave 87a Rechte lijn op logaritmisch papier, dus N = b · gt. t = 1 en N = 30 t = 7 en N = 400 N = b · 1,540t Dus N = 19,5 · 1,540t. 400 g6 dagen = gdag = ≈ 1,540 30 b · 1,5401 = 30 b = 19,5 10.7