Wiskundige technieken 2009/2010 Lineaire algebra Wiskundige technieken 2009/2010
Vandaag Vectoren en matrices Oplossen van stelsels vergelijkingen Aantal belangrijke begrippen uit de lineaire algebra Soms zonder, af en toe met bewijsjes En een enkel algoritme Lineaire algebra
Matrices Belangrijk in veel toepassingen: Oplossen van lineaire vergelijkingen Graphics, beeldverwerking (o.a. compressie) Natuurkunde Optimalisering Weergave van mogelijke toestanden van systeem en overgangen Graafalgoritmen Muziek (o.a., compressie) Planning En nog veel meer "Copyright © 1999-2003 by Jamie Zawinski. Permission to use, copy, modify, distribute, and sell this software and its documentation for any purpose is hereby granted without fee, provided that the above copyright notice appear in all copies and that both that copyright notice and this permission notice appear in supporting documentation. No representations are made about the suitability of this software for any purpose. It is provided "as is" without express or implied warranty." Lineaire algebra
Wat is een matrix 2-dimensionaal array van getallen (integers, reals, …) Notatie: 5 bij 3 matrix 3 bij 3 matrix, vierkant Lineaire algebra
Vector n bij 1 matrix Ook “liggende vectoren” (1 bij n) n heet dimensie van de vector Lineaire algebra
Vectoren en 2d en 3d Punt op platte vlak: vector met dimensie 2 Punt in de ruimte: vector met dimensie 3 R3 Toepassingen o.a. in natuurkunde: snelheid, versnelling, krachten, … y x Lineaire algebra
Optellen van vectoren Tel overeenkomstige elementen op Lineaire algebra
Scalair product van vector ax met a een getal en x een vector: vermenigvuldig alle waarden in x met a Lineaire algebra
Nulvector Is overal 0 Lineaire algebra
Lineaire combinaties Stel x1 , …, xn zijn vectoren van dezelfde dimensie d, en a1, …, an zijn getallen Lineaire combinatie: a1x1+a2x2 + … anxn Als vectoren een lineaire combinatie hebben die de 0-vector is (waarbij sommige ai ¹ 0), dan zijn ze afhankelijk Betekent dat ze in hetzelfde vlak liggen (bijv., in 2d, op dezelfde lijn) Anders: onafhankelijk Lineaire algebra
Ieder punt is lineaire combinatie van eenheidsvectoren Eenheidsvectoren in 2d: (0,1) en (1,0) Deze eenheidsvectoren vormen basis: elk punt in 2d is lineaire combinatie van deze vectoren Lineaire algebra
Andere bases Als stel van d vectoren van dimensie d onafhankelijk is, dan vormen ze een (alternatieve) basis: We kunnen punten ook opschrijven met behulp van deze vectoren Lineaire algebra
Voorbeeld In FM-stereo worden niet linkergeluid L en rechtergeluid R verzonden, maar monosignaal L+R en stereoverschilsignaal S=L-R Alternatieve basis: Lineaire algebra
Vraagjes Hoe weet je of een stelsel onafhankelijk is? Als je weet hoe je omrekent van 1e basis naar 2e basis, hoe reken je terug om? Matrices, inversen, determinanten, ... Lineaire algebra
Definities en notaties i-de rij van n bij n matrix: 1 bij n matrix i-de kolom van n bij n matrix: n bij 1 matrix aij is het (i,j)-de element van matrix A: staat op rij i en kolom j A = [aij] Lineaire algebra
Operaties op matrices:I Optellen A+B Lineaire algebra
Operaties II: Inproduct van liggende en staande vector Inproduct van 1 bij n vector (rij) en n bij 1 vector (kolom) Moeten even lang zijn – anders niet gedefinieerd Lineaire algebra
Operaties III Product van twee matrices A is n bij k matrix B is k bij m matrix Product van A en B: A*B wordt een n bij m matrix AB = [cij] met cij = ai1b1j + ai2b2j + … + aikbkj Lineaire algebra
Over matrixvermenigvuldiging Belangrijk in veel toepassingen Let op dat de formaten kloppen! Steeds “rij keer kolom” Niet commutatief Lineaire algebra
Pseudocode for i = 1 to m for j = 1 to n cij = 0; for q = 1 to k do cij = cij + aiq * aqj Lineaire algebra
Hoeveel werk O(m*n*k) A*B*C: de hoeveelheid werk kan verschillen afhankelijk of je (A*B)*C of A*(B*C) uitrekent Resultaat blijft wel hetzelfde Lineaire algebra
Product van matrix en vector A is m bij n matrix x is vector van lengte n (n bij 1 matrix) Ax wordt een vector van lengte m Wat betekent Ax=b? Stelsel lineaire vergelijkingen Lineaire algebra
Identiteitsmatrix Of noteer: I Lineaire algebra
Over identiteit Als A een n bij n matrix is: AIn=InA=A Lineaire algebra
Nulmatrix 0n : n bij n matrix die overal 0 is A0n = 0nA = 0n A+0n = 0n +A = A Lineaire algebra
Inverse Inverse van n bij n matrix A: een matrix B met AB = In en BA = In Stelling: Als AB=In en CA=In dan is B=C Bewijs: C = CIn = CAB = InB = B Er is dus maximaal 1 matrix die de inverse is Notatie: A-1 Lineaire algebra
Inverse gebruik voor oplossen stelsel vergelijkingen Ax=b dan en slechts dan als x = A-1b Want x = Inx = A-1Ax = A-1b Lineaire algebra
2 bij 2: determinant Determinant van een 2 bij 2 matrix A is det(A) = ad – bc Als de determinant 0 is, dan heeft A geen inverse Als de determinant niet 0 is, dan: Lineaire algebra
Voorbeeld 2x1 + 5 x2 = 11 x1 + 3 x2 = 6 Lineaire algebra
Vegen Vegen: methode om stelsel vergelijkingen op te lossen Idee: Herhaal: Neem een variabele zeg xi Zorg dat er maar 1 vergelijking is waar xi in voorkomt, door een van de vergelijkingen een aantal keren van de andere af te trekken Lineaire algebra
Stelsel a11x1+ a12x2+ … a1nxn= b1 a21x1+ a22x2+ … a1nxn= b2 … an1x1+ an2x2+ … annxn= bn Oftewel Ax=b Lineaire algebra
Pseudocode For i = 1 to n do {Veeg met variabele xi} Kies j met aji ¹ 0 die niet al eerder gekozen Voor elke k ¹ j Trek vergelijking j aki/aji keer van vergelijking k af Lineaire algebra
Opmerkingen Je krijgt steeds meer variabelen die maar 1 keer met een niet-0 worden vermenigvuldigd. Als je klaar bent met vegen kan je makkelijk de oplossing vinden… Lineaire algebra
Determinant van n bij n matrix Notatie: Ai,j is de matrix die je krijgt door uit A de i-de rij en de j-de kolom weg te laten Lineaire algebra
Determinant: gebruik Matrix A heeft een inverse als det(A)¹ 0 Als A geen inverse heeft, heeft het stelsel geen unieke oplossing Oneindig veel oplossingen OF Helemaal geen oplossing Er is ook een formule voor de inverse die alleen determinanten (van A en deelmatrices) gebruikt: onpraktisch Lineaire algebra
Terug naar de vectoren Is een stelsel vectoren afhankelijk? Dat is “gewoon” de vraag of een stelsel vergelijkingen Ax=0 meer dan 1 oplossing heeft (x=0 is altijd oplossing) Dus… hangt af of de determinant van de matrix die je van de basis maakt 0 is! Terugrekenen: bereken de inverse! Lineaire algebra
Over de determinant Als je kolommen of rijen verwisselt wordt de determinant met -1 vermenigvuldigd Als je de matrix spiegelt blijft de determinant hetzelfde Als je een kolom met een getal r vermenigvuldigd wordt de determinant ook met een getal r vermenigvuldigd Variabele in oplossing wordt r keer zo klein Als je een rij met een getal r vermenigvuldigd wordt de determinant ook met een getal r vermenigvuldigd Als r ¹ 0, dan houd je dezelfde oplossingen Lineaire algebra
En nog meer over de determinant Bij het vegen verandert de determinant niet! Als de determinant 0 is, dan kan je bij het vegen een hele vergelijking wegpoetsen… Lineaire algebra
Bovendriehoeksmatrix Kan je altijd met vegen krijgen Determinant is product diagonaalelementen Lineaire algebra
Voorbeeld Kleuren van pixels in een plaatje worden op verschillende manieren gecodeerd RGB: hoeveelheid rood, groen, en blauw Voor compressie wordt dit soms omgezet naar Y, Cb, Cr, met Y = 0.299R + 0.587G + 0.114B Cb = B – Y Cr = R – Y Toepassing: voor scherpte van plaatje is Y vooral belangrijk; bij opslag worden er minder bits gebruikt voor Cb en Cr Lineaire algebra
In matrixvorm Lineaire algebra
Inverse Lineaire algebra
Eigenwaarden en eigenvectoren Een eigenvector van een matrix A is een vector x, zodat er een (reëel) getal r is met Ax = rx. r heet dan een eigenwaarde Lineaire algebra
Optimaliseren Veel planningsproblemen zijn te schrijven als “lineair programma” Produceren van product 1 kost 3 minuten Produceren van product 2 kost 5 minuten Product 1 levert 5 winst, product 2 geeft 4 winst Maximale vraag is resp. 130 en 607 Tijd is 202 Wat is de maximale winst? Eerst als matrix schrijven, en dan … extra technieken nodig … Lineaire algebra
Conclusies Een inleiding in de lineaire algebra Allerlei plekken in de informatica gebruiken matrices en vectoren Lineaire algebra