vwo B Samenvatting Hoofdstuk 10

Slides:



Advertisements
Verwante presentaties
Toepassingen met integralen
Advertisements

havo B Samenvatting Hoofdstuk 6
Toepassingen op de stelling van Pythagoras
toepassingen van integralen
vwo B Samenvatting Hoofdstuk 10
havo A Samenvatting Hoofdstuk 7
vwo B Samenvatting Hoofdstuk 3
Stijgen en dalen constante stijging toenemende stijging
y is evenredig met x voorbeeld a N x 5 x 3
havo B Samenvatting Hoofdstuk 12
havo A Samenvatting Hoofdstuk 11
havo A Samenvatting Hoofdstuk 8
Volumeberekening van omwentelingslichamen
Oppervlakten berekenen
vwo B Samenvatting Hoofdstuk 11
vwo A/C Samenvatting Hoofdstuk 2
Elke 7 seconden een nieuw getal
Oppervlakten berekenen een mogelijke ontstaansgeschiedenis voor integralen... 6de jaar – 3 & 4u wiskunde Pedro Tytgat: Aanpassing Ronny Vrijsen.
Overzicht van de leerstof
vwo B Samenvatting Hoofdstuk 2
vwo B Samenvatting Hoofdstuk 1
vwo A Samenvatting Hoofdstuk 9
vwo A/C Samenvatting Hoofdstuk 5
vwo A/C Samenvatting Hoofdstuk 7
vwo A Samenvatting Hoofdstuk10
vwo B Samenvatting Hoofdstuk 7
vwo B Samenvatting Hoofdstuk 6
vwo A Samenvatting Hoofdstuk 12
vwo C Samenvatting Hoofdstuk 14
vwo B Samenvatting Hoofdstuk 15
De eenheidscirkel y α P x O (1, 0)
Riemannsommen De oppervlakte van het vlakdeel V in figuur a is
De grafiek van een machtsfunctie
De eenheidscirkel y α P x O (1, 0) Speciale driehoeken.
Rekenregels van machten
Optimaliseren van oppervlakten en lengten
∙ ∙ f(x) = axn is een machtsfunctie O n even n oneven y y y y a > 0
Machten en logaritmen Een stukje geschiedenis
Regelmaat in getallen … … …
De grafiek van een lineair verband is ALTIJD een rechte lijn.
Goniometrische formules
Differentieer regels De afgeleide van een functie f is volgens de limietdefinitie: Meestal bepaal je de afgeleide niet met deze limietdefinitie, maar.
Differentieer regels De afgeleide van een functie f is volgens de limietdefinitie: Meestal bepaal je de afgeleide niet met deze limietdefinitie, maar.
Asymptoot is een lijn waar de grafiek op den duur mee samenvalt.
Differentieer regels De afgeleide van een functie f is volgens de limietdefinitie: Meestal bepaal je de afgeleide niet met deze limietdefinitie, maar.
Regelmaat in getallen (1).
1 het type x² = getal 2 ontbinden in factoren 3 de abc-formule
havo B Samenvatting Hoofdstuk 2
havo B Samenvatting Hoofdstuk 8
JWO eerste ronde 2003 –probleem 13
22 De wet van Gauss H o o f d s t u k Elektrische flux
ribwis1 Toegepaste wiskunde – Differentieren Lesweek 7
Havo D deel 3 Samenvatting Hoofdstuk 11. x 2 y is (recht) evenredig met x De formule heeft de vorm y = ax De tabel is een verhoudingstabel. Bij een k.
Havo B Samenvatting Hoofdstuk 4. Interval a-8 ≤ x < 3 [ -8, 3 › b4 < x ≤ 4½ ‹ 4, 4½ ] c5,1 ≤ x ≤ 7,3 [ 5,1 ; 7,3 ] d3 < x ≤ π ‹ 3, π ] -83 l l ○● 44½4½.
havo D deel 3 Samenvatting Hoofdstuk 12
havo A Samenvatting Hoofdstuk 3
havo B Samenvatting Hoofdstuk 9
vwo D Samenvatting Hoofdstuk 12
Vwo C Samenvatting Hoofdstuk 15. Formules en de GR Met de GR kun je bijzonderheden van formules te weten komen. Eerst plot je de grafiek. Gebruik eventueel.
havo/vwo D Samenvatting Hoofdstuk 4
Tweedegraadsfuncties
23/11/2005 De Mets Armand.
B vwo vwo B - 11e editie tweede fase Jan Dijkhuis, Roeland Hiele
Wiskunde A of wiskunde B?.
havo B Samenvatting Hoofdstuk 3
Wiskunde A of wiskunde B?.
havo B Samenvatting Hoofdstuk 3
Voorkennis Wiskunde Les 7 Hoofdstuk 2/3: §2.5, 3.1 en 3.2.
toepassingen van integralen
Transcript van de presentatie:

vwo B Samenvatting Hoofdstuk 10

Riemannsommen De oppervlakte van het vlakdeel V in figuur a is te benaderen met behulp van rechthoeken. Daartoe verdeel je het interval [1, 5] in even lange deelintervallen. Hiernaast is gekozen voor rechthoeken met lengte ∆x = 1. Voor de hoogte van de rechthoeken kun je de kleinste functiewaarde op het deelinterval nemen, je krijgt dan de ondersom, zie figuur b de grootste functiewaarde op het deelinterval nemen, je krijgt dan de bovensom, zie figuur c de functiewaarde van een willekeurig getal xk van het deelinterval nemen, zie figuur d In het algemeen wordt de som van de oppervlakten van rechthoeken genoteerd als Dit heet een Riemannsom. Ook de ondersom en bovensom zijn Riemannsommen. Er geldt ondersom ≤ O(V) ≤ bovensom. 10.1

Integralen Door bij een Riemannsom de limiet voor ∆x naar 0 te nemen krijg je een integraal. De oppervlakte van het vlakdeel V dat boven de x-as ligt en wordt ingesloten door de grafiek van f, de x-as en de lijnen x = a en x = b is Met de GR kun je integralen nauwkeurig benaderen. Zo is de oppervlakte van het vlakdeel V dat wordt ingesloten door de grafiek van f(x) = , de x-as en de y-as gelijk aan dx De optie fnInt(TI) of ∫dx (Casio) geeft O(V) ≈ 1,89. De oppervlakte van het vlakdeel W dat wordt ingesloten door de grafiek van f en de lijnen x = 2 en y = √2 bereken je met O(W) = O(rechthoek) – O(V). Dus O(W) ≈ 2 · √2 – 1,89 ≈ 0,94. 10.1

Oppervlakte van een vlakdeel tussen grafieken In de figuur hiernaast is f(x) ≥ g(x) op het interval [a, b]. Daarom kan de oppervlakte van het vlakdeel V benaderd worden met behulp van de Riemannsom Voor de exacte oppervlakte neem je hiervan de limiet voor ∆x naar 0. Je krijgt O(V) = vb. Het vlakdeel W wordt ingesloten door de grafieken van f(x) = 2x – 8 en g(x) = -x2 Voer in y1 = 2x – 8 en y2 = -x2 Optie intersect geeft x ≈ -2,80 en x = 2. De optie fnInt (TI) of ∫dx (Casio) geeft O(W) ≈ ≈ 22,85 10.2

Inhoud van een omwentelingslichaam Door het vlakdeel U in de figuur hiernaast te wentelen om de x-as ontstaat het lichaam L. I(L) = Door het vlakdeel V in de figuur hiernaast te wentelen om de x-as ontstaat het lichaam M. I(M) = vb. Het lichaam N ontstaat door het vlakdeel W, ingesloten door de grafieken van f(x) = 2x – 8 en g(x) = -x2 , te wentelen om de x-as. De optie fnInt (TI) of ∫dx (Casio) geeft I(N) ≈ ≈ 593,4 10.2

Primitieven O’(x) = O(x + h) – O(x) = O(groene vlakdeel) ≈ f(x) · h De functie F is een primitieve van de functie f als F’ = f. Als F een primitieve van f is, dan zijn alle functies F + c primitieven van f. Het getal c heet de integratieconstante. Voor elke constante a geldt dat a · F een primitieve is van a · f. 10.3

Regels voor primitiveren Verder geldt dat als F een primitieve is van f, dan is een primitieve van f(ax + b). 10.3

Oppervlakte en primitieve O(V) = O(x) = F(x) + c = O(b) – O(a) = (F(b) + c) – (F(a) + c) = F(b) – F(a) = = F(b) – F(a) 10.3

Kegel en Bol Door het vlakdeel ingesloten door de lijn y = de x-as en de lijn x = h te wentelen om de x-as ontstaat een kegel met straal r en hoogte h. I(kegel) = ⅓πr2h Door de cirkel c: x2 + y2 = r2 te wentelen om de x-as ontstaat een bol met straal r. I(bol) = 1⅓πr3 Door het vlakdeel ingesloten door de cirkel c, de y-as en de lijn x = ⅔r te wentelen om de x-as ontstaat een bolschijf. I(bolschijf) = 10.4

Booglengte De booglengte van het deel van de grafiek van een functie f tussen x = a en x = b is Bij de functie f(x) = krijg je de booglengte van het deel van de grafiek tussen x = 1 en x = 4 als volgt. f(x) = geeft booglengte = De optie fnInt (TI) of ∫dx (Casio) geeft booglengte ≈ 3,150. Dus de omtrek van het vlakdeel V in de figuur hiernaast is 3 + f(1) + f(4) + booglengte ≈ 7,400. 10.4

Wentelen om de y-as Het vlakdeel V ligt rechts van de y-as en wordt ingesloten door de grafiek van de functie f, de y-as en de lijnen y = a en y = b. De inhoud van het lichaam L dat ontstaat als V om de y-as wentelt is I(L) = 10.4

vwo B 10.1 Riemannsommen en integralen

Riemannsommen De oppervlakte van het vlakdeel V in figuur a is te benaderen met behulp van rechthoeken. Daartoe verdeel je het interval [1, 5] in even lange deelintervallen. Hiernaast is gekozen voor rechthoeken met lengte ∆x = 1. Voor de hoogte van de rechthoeken kun je de kleinste functiewaarde op het deelinterval nemen, je krijgt dan de ondersom, zie figuur b de grootste functiewaarde op het deelinterval nemen, je krijgt dan de bovensom, zie figuur c de functiewaarde van een willekeurig getal xk van het deelinterval nemen, zie figuur d In het algemeen wordt de som van de oppervlakten van rechthoeken genoteerd als Dit heet een Riemannsom. Ook de ondersom en bovensom zijn Riemannsommen. Er geldt ondersom ≤ O(V) ≤ bovensom.

opgave 5 f(x) = a f(x) = 0 geeft 12 – 2x = 0 -2x = -12 x = 6 De middens van de intervallen zijn 0,5 ; 1,5 ; 2,5 ; 3,5 ; 4,5 en 5,5. O(V) ≈ (f(0,5) + f(1,5) + f(2,5) + f(3,5) + f(4,5) + f(5,5)) · 1 ≈ 6,28 b ondersom = (f(1) + f(2) + f(3) + f(4) + f(5) + f(6)) · 1 ≈ 4,91 bovensom = (f(0) + f(1) + f(2) + f(3) + f(4) + f(5)) · 1 ≈ 7,91 Dus 4,91 ≤ O(V) ≤ 7,91.

Integralen Door bij een Riemannsom de limiet voor ∆x naar 0 te nemen krijg je een integraal. De oppervlakte van het vlakdeel V dat boven de x-as ligt en wordt ingesloten door de grafiek van f, de x-as en de lijnen x = a en x = b is Met de GR kun je integralen nauwkeurig benaderen. Zo is de oppervlakte van het vlakdeel V dat wordt ingesloten door de grafiek van f(x) = , de x-as en de y-as gelijk aan dx De optie fnInt(TI) of ∫dx (Casio) geeft O(V) ≈ 1,89. De oppervlakte van het vlakdeel W dat wordt ingesloten door de grafiek van f en de lijnen x = 2 en y = √2 bereken je met O(W) = O(rechthoek) – O(V). Dus O(W) ≈ 2 · √2 – 1,89 ≈ 0,94.

opgave 9 f(x) = 5 geeft 6x – x2 = 5 -x2 + 6x – 5 = 0 x2 – 6x + 5 = 0 (x – 1)(x – 5) = 0 x = 1 ⋁ x = 5 De optie fnInt (TI) of ∫dx (Casio) geeft ≈ 30,667 O(V) ≈ 30,667 – 4 · 5 ≈ 10,67

opgave 10 a f(x) = 1 geeft x3 – 5x2 + 6x + 1 = 1 x3 – 5x2 + 6x = 0 x(x2 – 5x + 6x) = 0 x(x – 2)(x – 3) = 0 x = 0 ⋁ x = 2 ⋁ x = 3 De optie fnInt (TI) of ∫dx (Casio) geeft ≈ 0,583. O(V) ≈ 1 · 1 – 0,583 ≈ 0,42 b De optie fnInt (TI) of ∫dx (Casio) geeft ≈ 4,667. O(W) ≈ 4,667 – 2 · 1 ≈ 2,67

vwo B 10.2 Oppervlakten en inhouden

Oppervlakte van een vlakdeel tussen grafieken In de figuur hiernaast is f(x) ≥ g(x) op het interval [a, b]. Daarom kan de oppervlakte van het vlakdeel V benaderd worden met behulp van de Riemannsom Voor de exacte oppervlakte neem je hiervan de limiet voor ∆x naar 0. Je krijgt O(V) = vb. Het vlakdeel W wordt ingesloten door de grafieken van f(x) = 2x – 8 en g(x) = -x2 Voer in y1 = 2x – 8 en y2 = -x2 Optie intersect geeft x ≈ -2,80 en x = 2. De optie fnInt (TI) of ∫dx (Casio) geeft O(W) ≈ ≈ 22,85

opgave 14 f(x) = sin(x) met Df = [0, π] Voer in y1 = sin(x) en y2 = ¼ x. De optie intersect geeft x ≈ 2,4746. De optie fnInt (TI) of ∫dx (Casio) geeft O(V) = en De lijn y = ¼ x verdeelt V niet in twee delen met gelijke oppervlakte.

Inhoud van een omwentelingslichaam Door het vlakdeel U in de figuur hiernaast te wentelen om de x-as ontstaat het lichaam L. I(L) = Door het vlakdeel V in de figuur hiernaast te wentelen om de x-as ontstaat het lichaam M. I(M) = vb. Het lichaam N ontstaat door het vlakdeel W, ingesloten door de grafieken van f(x) = 2x – 8 en g(x) = -x2 , te wentelen om de x-as. De optie fnInt (TI) of ∫dx (Casio) geeft I(N) ≈ ≈ 593,4

opgave 21 Voer in y1 = -0,1x4 + x2 + x + 3 De optie zero (TI) of ROOT (Casio) geeft x ≈ -3,14 en x ≈ 3,83. De optie fnInt (TI) of ∫dx (Casio) geeft I(L) ≈

opgave 29 Voer in y1 = -⅓x3 + 2x2 en y2 = x + 4 De optie intersect geeft x ≈ -1,11, x ≈ 2,22 en x ≈ 4,88. De optie fnInt (TI) of ∫dx (Casio) geeft I(beide lichamen) ≈ ≈ 227,0251 – 71,1462 + 748,3616 – 481,3562 ≈ 422,88

vwo B 10.3 Primitieve functies

Primitieven O’(x) = O(x + h) – O(x) = O(groene vlakdeel) ≈ f(x) · h De functie F is een primitieve van de functie f als F’ = f. Als F een primitieve van f is, dan zijn alle functies F + c primitieven van f. Het getal c heet de integratieconstante. Voor elke constante a geldt dat a · F een primitieve is van a · f.

Regels voor primitiveren Verder geldt dat als F een primitieve is van f, dan is een primitieve van f(ax + b).

opgave 40 a f(x) = ex+1 = ex · e = e · ex F(x) = e · ex + c = ex+1 + c b f(x) = F(x) = c f(x) =

Oppervlakte en primitieve O(V) = O(x) = F(x) + c = O(b) – O(a) = (F(b) + c) – (F(a) + c) = F(b) – F(a) = = F(b) – F(a)

opgave 49 I(L1+ L2) = I(L1) = ½ · 18π geeft π(½a2 – 2a) – π · (2 – 4) = 9π π(½a2 – 2a) + 2π = 9π ½a2 – 2a + 2 = 9 a2 – 4a – 14 = 0 D = 16 – 4 · 1 · -14 = 72 voldoet niet voldoet =