Virgielcollege Mede mogelijk gemaakt door uw Eerstejaarsch Commissie
Hoe ziet vandaag eruit? Studeerkunde – 10 min Analyse – 35 min Pauze – 15 min Analyse – 20 min Tentamenvragen – 25 min
Studeerkunde Hoe studeer je? Studeerkunde Analyse Tentamen
Studeerkunde Discipline - Op tijd opstaan - ‘Combineer’ discipline, geen geheelonthouding - Gewoon doen! Plannen - Stel haalbare doelen - Schets mogelijke scenario’s - Leg duidelijke prioriteiten wanneer dat nodig is - Plan in dagdelen (‘s morgens, ‘s middags, ‘s avonds) - Plan resultaatgericht Studeerkunde Analyse Tentamen
Studeerkunde Makkelijk punten scoren - Prioriteit bij projecten - Beter 2 zessen dan 3 vijven - Makkelijk vakken doen - Let op vervolgvakken Verder - Thuis of UB, wat werkt voor jou het beste? - Regelmaat, afleiding (toko eten etc.) Studeerkunde Analyse Tentamen
Studeerkunde ? !!! Studeerkunde Analyse Tentamen
Analyse 1 CalculusDifferentiationIntegration - Trigonometry - Logarithms - Complexe Numbers - Vectors - Limits - Differentials - Productrule - Chain Rule - Impliciet Differentiëren - Differential Equations - Integrals - Substitution - Integration by Parts Studeerkunde Analyse Tentamen
Calculus Appendix D: Trigonometry Appendix H: Complex numbers H12: Vectors and the geometry of space H2: Limits and derivatives
APPENDIX D Trigonometry Calculus Differentiëren Integreren b a c What exactly is a cosine or sine?
APPENDIX D Trigonometry Calculus Differentiëren Integreren
APPENDIX D Trigonometry Calculus Differentiëren Integreren o 60 o 30 o 2 1
APPENDIX H Complex numbers Calculus Differentiëren Integreren Complex numbers are ‘imaginary’, but very useful in engineering situations. Especially Euler’s formula.
CHAPTER 12 Vectors and the geometry of space Calculus Differentiëren Integreren A vector is a point in space, and can be used to visualize a mathematical problem.
CHAPTER 12 Vectors and the geometry of space Calculus Differentiëren Integreren Important formulas concerning vectors Length of a vector Angle between two vectors Volume determined by three vectors
CHAPTER 12 Vectors and the geometry of space Calculus Differentiëren Integreren Parametric equations of a line Parametric equations of a function
Differentiëren H3, H4, H9
Differentials Calculus Differentiëren Integreren Power Rule Constant Multiple Rule Sum Rule ‘Core Analysis Business’, very important for engineering purposes. Lot of different notations.
Product- & Quotiëntregel Calculus Differentiëren Integreren
Chain Rule Calculus Differentiëren Integreren If g is differentiable at x and f is differentiable at g(x), then the composite function F= f o g defined by F(x) = f(g(x)) is differentiable at x and F’ is given by the product:
Implicit Differentiation Calculus Differentiëren Integreren Occurs when functions are defined implicitly by a relation between x and y such as: For example, differentiate with respect to x,
Implicit Differentiation Calculus Differentiëren Integreren !!! Because y is a function of x, apply chain rule:
Integration H5, H7
Integrals Calculus Differentiëren Integreren The Fundamental Theorem of Calculus states that if:
Integrals Calculus Differentiëren Integreren There are two important techniques for integrals: - Integration by parts - Substitution Rule Mind the Chain Rule!
Tentamen WTB & MT, Januari 2008 Studeerkunde Analyse Tentamen
Vragen?