De presentatie wordt gedownload. Even geduld aub

De presentatie wordt gedownload. Even geduld aub

Beschrijvende en inferentiële statistiek College 7 – Anouk den Hamer – Hoofdstuk 10 (10.1, 10.3 geen tentamenstof, van 10.4 is alleen het stuk over gemiddeldes.

Verwante presentaties


Presentatie over: "Beschrijvende en inferentiële statistiek College 7 – Anouk den Hamer – Hoofdstuk 10 (10.1, 10.3 geen tentamenstof, van 10.4 is alleen het stuk over gemiddeldes."— Transcript van de presentatie:

1 Beschrijvende en inferentiële statistiek College 7 – Anouk den Hamer – Hoofdstuk 10 (10.1, 10.3 geen tentamenstof, van 10.4 is alleen het stuk over gemiddeldes tentamenstof, het stuk over proporties niet) 1

2 Vandaag Korte quiz stof vorige week Oude tentamenvragen bespreken Independent T-test Dependent T-test 2

3 Vorige week Betrouwbaarheidsintervallen Hypothesetoetsing 3

4 Vraag 1 Je wilt een 99% betrouwbaarheidsinterval maken van een populatiegemiddelde. Je steekproef bestaat uit 250 respondenten. Welke formule gebruik je voor het interval? a) Gemiddelde ± z 1.96 (se) b) Gemiddelde ± z 2.58 (se) c) Gemiddelde ± t 1.96 (se) d) Gemiddelde ± t 2.58 (se) 4

5 Vraag 2 Je steekproef bestaat uit 25 respondenten. Welke verdeling gebruik je voor je betrouwbaarheidsinterval? a)De z-verdeling b)De t-verdeling 5

6 Vraag 3 Je vraagt je af of de colleges op dinsdag drukker bezocht worden dan de colleges op woensdag. Je hypothese is dat de dinsdagcolleges meer bezocht worden dan de woensdagcolleges. Nadat je onderzoekgegevens verzameld hebt, vind je in SPSS een p-waarde van 0.09 (2-tailed). Wat doe je met de nulhypothese? a)Die kun je verwerpen b)Die kun je niet verwerpen 6

7 Vraag 4 Op welke drie manieren kun je in SPSS zien of je de nulhypothese wel of niet kunt verwerpen? Antwoord: t-score, p-waarde, betrouwbaarheidsinterval 7

8 8

9 9

10 10

11 11

12 12 Eenzijdig of tweezijdig?

13 13 95% Tweezijdig: t.025 Eenzijdig: t.05

14 14

15 Tot nu toe geleerd Beschrijvende statistiek Populatie- en kansverdelingen Inferentiële statistiek Week 1: o.a. proporties, gemiddeldes, standaarddeviaties en z-scores Week 2: steekproevenverdeling, op basis daarvan betrouwbare schattingen maken van populatiewaarde Week 3: voor één variabele berekend hoe ver de populatiewaarde waarschijnlijk van de steekproefwaarde af ligt (het CI) en getoetst of het waarschijnlijk is dat de populatiewaarde een bepaalde waarde NIET is (de hypothesetoets) 15

16 Univariate toetsen: Toetsen waarbij je één enkele variabele onderzoekt. Bivariate toetsen: Toetsen waarbij je onderzoekt of er een relatie bestaat tussen 2 variabelen. Multivariate toetsen: Relatie tussen meer dan 2 variabelen. 16

17 Beschrijvende statistieken: univariaat Centrum Gemiddelde Mediaan Modus Spreiding Standaard deviatie Range Kwartielen Interkwartielafstand (IQR) Positie Deviatie z-score / t-score Percentiel Outlier Variabelen Categorisch Kwantitatief (discreet en continu) Verdeling van de data (data distribution) Uni-/ bimodaal Scheefheid Normaalverdeling Grafische weergaven Categorisch Pie chart; bar chart Kwantitatief Histogram Stem-and-leaf plot Dot plot/ scatterplot Box plot 17

18 Beschrijvende statistieken: bivariaat Kwantitatief Scatterplot Associatie (positief/ negatief) Correlatie Regressie Causaliteit Variabelen Afhankelijk Onafhankelijk Categorisch Kruistabel (contingency tabel/ cross table) Marginale proporties Conditionele proporties Geen kinderen Wel kinderen Totaal aantal Proportie (marginaal) Niet getrouwd Wel getrouwd Totaal aantal Proportie (marginaal)

19 Inferentiële statistiek: overzicht Aantal variabelen Soort variabele(n)BetrouwbaarheidsintervalHypothesetoets 1Categorisch 1Kwantitatief 2 (of meer) Kwantitatief en 2 onafhankelijke groepen Kwantitatief en 2 afhankelijke groepen idem. Categorisch-chi-kwadraat Kwantitatief of combinatie - correlatie en regressie 19

20 T-toets Vergelijken van gemiddelden van twee groepen Independent T-test Dependent T-test Geslacht: man/vrouw Inkomen 20

21 Independent samples Bij een independent sample worden groepen vergeleken die niks met elkaar van doen hebben. 21

22 Dependent samples Bij een dependent sample worden groepen vergeleken die wel wat met elkaar van doen hebben, zoals echtparen. Bv inkomen van de man vergeleken met het inkomen van de vrouw. Een dependent sample kan ook bestaan uit een voor- en een nameting van dezelfde respondenten. Bv het inkomen van een man voordat hij getrouwd is en het inkomen nadat hij getrouwd is. 22

23 Independent T-test Vergelijken van twee groepen die onafhankelijk van elkaar zijn. 23

24 Voorbeeld independent t-test Voorbeeldhypothese: Mensen met een kat zijn gelukkiger dan mensen zonder kat. 24

25 Mensen met een kat zijn gelukkiger dan mensen zonder kat. Variabele: het wel of niet hebben van een kat Groep 1: heeft geen kat Groep 2: heeft wel een kat Nulhypothese: Mensen met een kat zijn net zo gelukkig als mensen zonder kat. 25

26 26

27 Katten en geluk (independent sample) Test statistic: S 1 is de standaarddeviatie van groep 1 en s 2 van groep 2. Waarom – 0? Dat is de waarde van de nulhypothese. De nulhypothese zegt dat er geen verschil is tussen beide groepen. 27

28 Katten en geluk (independent sample) respondenten ondervraagd: Formule test statistic invullen: 28

29 Katten en geluk (independent sample) De test statistic is -10 De p-waarde is kleiner dan 0.05 (anders had de test statistic tussen en 1.96 gelegen), de nulhypothese blijkt dus niet op te gaan

30 Katten en geluk (independent sample) Zijn mensen met kat gelukkiger dan mensen zonder kat? Ja, want mensen met kat scoren significant hoger op de vraag hoe gelukkig ze zijn (p <.05). 30

31 Hoe ziet dat er uit in SPSS? Kijk eerst bij vak Levene’s test. Als die p-waarde (onder sig.) lager is dan 0.05 dan hadden de groepen niet dezelfde standaarddeviatie en moet je in de onderste regel van de rest van de tabel kijken (equal variances not assumed). NB: merk op dat de se hetzelfde is als we hadden berekend met de formule. De test statistic wijkt af (wij kwamen op -10), maar ligt waarschijnlijk aan afronding. 31

32 Dus: Bij output eerst naar Levene’s test kijken: -Die test of variantie van de twee groepen gelijk is -Niet gelijk? Dus p <.05? Dan equal variances not assumed 32

33 Degrees of freedom Df bij t-toets (bij gelijke variantie): df = n1 + n2 – 2 Formule df bij ongelijke variantie is anders (GEEN tentamenstof): 33

34 Dependent T-test Vergelijken van groepen die afhankelijk van elkaar zijn. 34

35 Voorbeeld dependent t-test Voorbeeldhypothese: Mensen die nu een kat hebben zijn gelukkiger dan toen ze nog geen kat hadden. Variabele: eerst geen kat, later wel een kat Groep 1: eerst geen kat Groep 2: later wel een kat Nulhypothese: Mensen die nu een kat hebben zijn net zo gelukkig als toen ze nog geen kat hadden. 35

36 Katten en geluk (paired sample) Hierbij is µ d het verschil in gemiddelde Test statistic: Hierbij: S d is hoeveel men gemiddeld van afwijkt. Let op: dus niet s 1 – s 2. S d berekent SPSS voor ons. 36

37 Katten en geluk (paired sample) 252 respondenten ondervraagd: In een andere tabel vind ik S d = Formule test statistic invullen: 37

38 Katten en geluk (paired sample) Aan het gemiddelde zien we dat de mensen eerst een 7.10 scoorden en toen ze een kat hadden Aan de p-waarde (<.05) zien we dat dit verschil in gemiddelde significant is. Mensen die nu een kat hebben zijn significant gelukkiger dan toen ze nog geen kat hadden (p <.05). 38

39 Katten en geluk (paired sample) Test statistic: 39

40 Katten en geluk (paired sample) Df bij dependent t-test: n

41 Conclusie Mensen die nu een kat hebben zijn significant gelukkiger dan toen ze nog geen kat hadden (p <.05). 41

42 Stappenplan t-toets 1.Bepaal of het om onafhankelijke of afhankelijke groepen gaat 2.Benoem de Ho en Ha 3.Bereken de test statistic 4.Vind de p-waarde 5.Bepaal wat je doet met H0 42

43 Betrouwbaarheidsintervallen We hadden ipv de t-test ook betrouwbaarheidsintervallen kunnen maken Independent t-test: 43

44 CI bij independent sample Zijn mensen met kat gelukkiger dan mensen zonder kat? (6.89 – 7.07) ± 1.96(0.018), dus ± CI 95 = en Komt geen 0 in voor, dus significant verschil tussen de groepen 44

45 Wij vonden CI: en

46 Kunnen weer op 3 manieren zien dat er significant verschil tussen de groepen is: T-statistic, p-waarde en CI van het verschil 46

47 CI bij dependent sample Se d is in dit geval.090 (zagen we in eerdere output). Aantal df: n – 1 = 252 – 1 = 251 Groot genoeg om voor t aan te houden Verschil in gemiddelden: ± 1.96(.090) CI 95 =.5636 en.9164 Komt geen 0 in voor, dus significant verschil tussen groepen 47

48 Confounding (achterliggende) variabelen Stel nu dat mensen niet zozeer gelukkig worden van het hebben van een kat, maar dat er een andere reden is waarom mensen met een kat zo gelukkig zijn. Confounding variabele: variabele die zowel invloed heeft op de onafhankelijke als de afhankelijke variabele. 48

49 Confounder katten en geluk? Kat (ja/nee) ? Geluk (op schaal van 1- 10) 49

50 Confounder roken en gezondheid? Roken (ja/nee) Sporten (ja/nee) Gezondheid (op schaal van 1-10) 50

51 Controlevariabele We gaan controleren voor de variabele ‘sporten’, dat noemen we een controlevariabele. Controlevariabele: een variabele die je resultaten zou kunnen beïnvloeden, en waar je rekening mee houdt. Bedenk dit vóór aanvang van je onderzoek, zodat je het kunt meten. 51

52 Gemiddelde gezondheid zonder controlevariabele Gemiddelde gezondheid RokersOngeveer 6.1 Niet rokersOngeveer

53 Gemiddelde gezondheid Als we controleren voor ‘sporten’ vinden we de volgende gemiddeldes: Hoe je dit toetst in SPSS leer je later Gemiddelde gezondheid Sport welSport niet Rokers Niet rokers

54 Samenvatting Bij onafhankelijke steekproeven: – Steekproeven hebben niks met elkaar te maken – We bestuderen het verschil tussen gemiddelden Bij afhankelijke steekproeven: – Steekproeven hebben wel wat met elkaar te maken – We bestuderen de mean difference van de gepaarde observaties 54

55 Vraag 1 Independent of dependent t-toets: Eten mannen meer fruit dan vrouwen? a)Independent t-toets b)Dependent t-toets 55

56 Vraag 2 Independent of dependent t-toets: Je wilt weten of relatietherapie werkt. Je ondervraagt mensen die wel therapie volgen en mensen die geen therapie volgen. a)Independent t-toets b)Dependent t-toets 56

57 Vraag 3 Independent of dependent t-toets : Je wilt weten of relatietherapie werkt. Je ondervraagt koppels en meet of ze na de therapie gelukkiger zijn dan ervoor. a)Independent t-toets b)Dependent t-toets 57

58 Vraag 4 Zijn de jongens in mijn dataset significant ouder dan de meisjes? a)Ja b)Nee 58

59 Vraag 5 Zijn de respondenten meer gaan internetten in hun vrije tijd? (1 = minder dan één keer per maand, 2 = één keer per maand, 3 = één keer per week, 4 = meerdere keren per week, 5 = elke dag) a)Ja b)Nee 59 Noot toegevoegd na college: aangezien we eenzijdig toetsen, moet de p- waarde nog wel door 2 gedeeld worden. Ook dan trekken we de conclusie dat we de nulhypothese niet kunnen verwerpen.

60 Hoe in SPSS? Independent T-test: Analyze – Compare Means – Independent T-test. De variabele die uit de 2 groepen bestaat is je grouping variable. Vul bij define groups de waarden van deze groepen in (vaak 1 en 2). De afhankelijke variabele komt in test variabele. Dependent T-test: Analyze – Compare Means – Paired Samples T-test. Dubbelklik op de variabele van de voormeting en dubbelklik daarbij op de variabele van de nameting. 60

61 61

62 62

63 63

64 64

65 65


Download ppt "Beschrijvende en inferentiële statistiek College 7 – Anouk den Hamer – Hoofdstuk 10 (10.1, 10.3 geen tentamenstof, van 10.4 is alleen het stuk over gemiddeldes."

Verwante presentaties


Ads door Google