De presentatie wordt gedownload. Even geduld aub

De presentatie wordt gedownload. Even geduld aub

Perceptie en Actie in Beweging

Verwante presentaties


Presentatie over: "Perceptie en Actie in Beweging"— Transcript van de presentatie:

1 Perceptie en Actie in Beweging
Pieter Medendorp

2 Staat een medespeler achter me?
Beweeg ik zelf, of word ik geduwd? Linker- of rechtervoet?

3

4

5 Conclusie Actie Spieren Zintuigen Perceptie Voorspeller

6

7 Tast Zien Horen Ruiken

8 Bewustzijn Perceptie, Kennis Intentie Sensatie Motoriek Zintuigen Spieren bv. Licht, Geluid Actie Omgeving

9 Senso-Motorische Integratie
Computermodellen Theorie ontwikkeling Gedrags-metingen Begrijpen gedrag, test van theorie Patienten Begrijpen pathologie Senso-Motorische Integratie Hersenen (EEG, MEG, fMRI, TMS) Begrijpen neurale mechanismen

10 Wat moet het brein doen? Transformeren van informatie
Omgaan met onbetrouwbare signalen Voorspellingen maken Beslissen Aanpassen aan nieuwe situaties

11 Transformeren Zien Schieten

12 Motoriek Transformeren Transformatie Zien

13 Onzekerheid Kans 0.5 Kans 0.16 ruis Kop Munt 1 2 3 4 5 6 Signaal

14 Beginner Expert Movies courtesy B Ölveczky
Meet Andre. He’s a beginner at tennis, which maybe you can tell from his BLATANT footfaults and awkward form. Here we tracked his right hand as he tries to repeat the same exact service motion. Note there’s considerable difference between his hand motion in these consecutive attempts When we plot 5 consecutive serves, the trial to trial variability is even more apparent. If Andre practices really hard over the next 10 years, he might stop foot faulting, and even eventually get to the level of Alexei, the top player on Harvard’s Varsity team. Alexei has an amazing serve, that clocks above 100 mph, and consistently hits the same corner of the service box. Alexei has beautiful form, and I want you to look at the remarkable consistency of his service motion. When we plot 5 of his serves, we can see that they’re nearly identical. I’m using this example to demonstrate a typical pattern in motor learning where performance increases, while variability decreases. One way of interpreting this pattern is that variability and performance are intrinsically inversely related: that reducing variability allows for increasing performance. Thus, variability stands in the way of performance, so in order to achieve high performance, the brain must learn to minimize variability. This is in line with the idea that optimal control strategies are often formulated with motor variability as a part of the cost function. But a different way of looking at this relationship, is that high variability precedes good performance. This is in line with the idea from Reinforcement learning: that high performance results from exploration which requires highly variable actions. Thus, highly variable movements allows for more extensive exploration, which promotes a faster search in movement space to find a motor solution. This second view has been extensively studied in the birdsong model system. Male songbirds spend their lives learning and maintaining a mating song. Decades of work have revealed the brain circuit responsible for song learning. Evidence suggests that the songbird brain purposefully generates and regulates song variability in order to facilitate learning and performance in different respective contexts. [refer to diagram] When the juvenile bird is first learning its song, consecutive renditions are highly variable. Interestingly, this variability is driven by a specific brain region, referred to as LMAN. If LMAN is lesioned in a juvenile bird, the song variability is dramatically decreased, and further improvement of that song is halted. This suggests that motor variability is actively generated in the brain, and that it is required for learning. Here we’re going to explore the idea that motor variability drives motor learning in humans. And that differences in motor variability from one person to another --measured before any training has occurred—predict person to person differences in learning ability.

15 Redeneren: omgaan met onbetrouwbare signalen
kennis Perceptie zintuigen

16 Ambiguiteit x Netvlies

17 x Netvlies

18 Voorspellen CC

19 Parietale cortex

20 Het brein beredeneert en maakt continu voorspellingen maakt over de te verwachten situatie.
kennis Perceptie Voorspelling zintuigen

21 Keuzes maken

22 Ook Rafael van de Vaart sprak zich uit over de bal: "Niet normaal hoe die bal zwabbert. Daar kun je echt niet aan wennen", aldus Van der Vaart. Iker Casillas, de doelman van Spanje, ging zelfs zo ver de bal een 'strandbal' te noemen.

23

24 leercurve Reikfout Test nummer

25 Het brein transformeert, redeneert, voorspelt en leert om perceptie en actie op elkaar af te stemmen.

26 Model Actie Spieren Perceptie Voorspeller Zintuigen Frontale schors
Motorisch signaal Spieren Actie selectie (kosten/baten) Zintuigen Metingen Cc: Perceptie Voorspellingen Voorspeller Cerebellum Kennis Parietale schors Zien Tast Evenwicht

27 Model Actie Spieren voorspellen transformeren leren Perceptie
Motorisch signaal Spieren Actie selectie (kosten/baten) Zintuigen leren transformeren redeneren voorspellen Perceptie Voorspeller Kennis Zien Tast Evenwicht

28 Blessure Ziekte Vergrijzing

29 Workshop Openingsactiviteit: Wat doen de neuronen is ons brein?
Circuit met 3 experimenten om het schema beter te begrijpen Omgaan met een nieuwe situatie Vertragingen in ons brein Zoek de verschillen


Download ppt "Perceptie en Actie in Beweging"

Verwante presentaties


Ads door Google