Diode in historisch perspectief Hans Wallinga Emeritus Universiteit Twente 10-03-2005 NERG,Utrecht
Vacuüm Diode Gepatenteerd in 1904 John Ambrose Fleming (1848-1945) Uitvinder:Sir Ambrose J. Fleming November 29, 1848, Lancaster, UK April 18, 1945, Sidmouth, Devon, UK Ian Fleming 1904, in vervolg op de edison buis, gebasseerd op thermische emissie English engineer who made numerous contributions to electronics, photometry, electric measurements, and wireless telegraphy. He is best remembered as the inventor of the two-electrode radio rectifier, which he called the thermionic valve; it is also known as the vacuum diode, kenotron, thermionic tube, and Fleming valve. It was patented in 1904. CE Hall of Fame Publications > Awards > CE Hall of Fame > Inductees > Inductee Detail Sir John Ambrose Fleming 1849 - 1945 ·Invented the diode that revolutionized radio telegraphy ·Invented the vacuum tube and diode 2001 inductee Sir John Ambrose Fleming's invention of the thermionic valve (tube) jumpstarted modern electronics. He also made many other contributions to the field of electrical machinery. He was born in 1849, the eldest of seven children to a Congregational minister. Although born in Lancaster, his family soon moved to London. After studying at University College, London, and at Cambridge University, Fleming was a consultant for the Edison Electric Light Company in London. He later became an adviser to the Marconi Wireless Telegraph Company and a popular teacher at University College (UCL) from 1885 to 1926, where he was the first to hold the title of professor of electrical engineering. Early in his career Fleming investigated photometry, worked with high-voltage alternating currents and designed some of the first electric lighting for ships. In addition, Fleming designed the transmitter that made Marconi's first transatlantic transmission in 1901 possible. The vacuum-tube diode contains two electrodes: the cathode, which is either a heated filament or a small, heated, metal tube that emits electrons through thermionic emission; and the anode, or plate, which is the electron-collecting element). Vacuum tubes have been almost entirely replaced by transistors, which are cheaper, smaller and more reliable. The invention of the diode was a revolutionary idea, but it had little impact at first. "Valves" were expensive to make, and in less than two years, the "cat's whisker" was produced, a crude form of semiconductor rectifier that consisted of a thin wire positioned on a lump of suitable material (even coal) to produce a point contact rectifier. This was more convenient than Fleming's diode and it soon caught on. 10-03-2005 NERG,Utrecht
Schottky diode Gepatenteerd in 1938 Walter Schottky (1886-1976) born July 23, 1886, Zürich, Switzerland died March 4, 1976, Pretzfeld, W.Germany The Schottky diode can be manufactured in a variety of forms. The most simple is the point contact diode where a metal wire is pressed against a clean semiconductor surface. This was how the early Cat's Whisker detectors were made, and they were found to be very unreliable, requiring frequent repositioning of the wire to ensure satisfactory operation. In fact the diode that is formed may either be a Schottky barrier diode or a standard PN junction dependent upon the way in which the wire and semiconductor meet and the resulting forming process. Nobelprijs 1911 10-03-2005 NERG,Utrecht
pn-overgang William Bradford Shockley (1910 - 1989) Gepatenteerd in 1951 William Bradford Shockley (1910 - 1989) Nobelprijs 1956 10-03-2005 NERG,Utrecht
Fysische werking vacuüm diode Thermische emissie: Diode stroom: Diode symbolen Diode karakterisieken 10-03-2005 NERG,Utrecht
Fysische werking pn-junctie (1) Op de grenslaag tussen een n- en p- type halfgeleider ontstaat een depletielaag waar de beweeglijke ladingdragers slechts in zeer lage concentratie aanwezig zijn Het elektrisch veld en de diffussie houden elkaar in evenwicht. Uitleg van de formule. Bij verstoring van het evenwicht zal de aan- en afvoer van minderheislading in de neutrale gebieden het gedrag van de diode bepalen. 10-03-2005 NERG,Utrecht
Fysische werking pn-junctie (2) Voorwaartsstroom: 10-03-2005 NERG,Utrecht
Fysische werking pn-junctie (3) sperstroom De lekstroom wordt bepaald door de doteringen en de temperatuur. Hoe hoger de doteringen hoe kleiner de lekstroom, maar ook de doorslagspanning wordt klein. Voor toenemende temperuur neemt ni2 toe en dus ook de lekstroom. D ewerking van de Schottky diode is grotendeels identiekaan de pn-junctie. Slechts met een gedoteerd marteriaal te maken, het metaal kunnen we beschouwen als een zeer hoog gedoteerde halfgeleider. 10-03-2005 NERG,Utrecht
Fleming Valve Elektriciteit Vacuum 10-03-2005 NERG,Utrecht In November, we celebrate the anniversary of the grant of two patents. The first is U.S. Patent No. 803,684 to John Fleming on 7 Nov. 1905 for "An Instrument For Converting Alternating Electrical Currents Into Continuous Currents" (what he called a "valve" we call a vacuum tube diode). The second is U.S. Patent No. 836,070 to Lee DeForest on 13 Nov. 1906 for an "Oscillation Responsive Device" (what he called a two-element "audion" and we call a vacuum tube diode). 10-03-2005 NERG,Utrecht
Vervolg: Lee de Forest, Audion, de triode (1908) Octrooi van Fleming: 1906, ingediend in 1904 Principe: Edison effect, beschreven in 1880 Fleming patenteerde een device waarvan de werking reeds door Edison was ontdekt, maar waarvan hij de bruikbaarheid niet had onderkend The Edison Effect In early 1880, Edison and his team were hard at work trying to find a light bulb filament that worked well. He had already settled on a carbonized (burned) bamboo filament, but even this solution was not perfect. After glowing for a few hours, carbon from the filament would be deposited on the inside walls of the bulb, turning it black. This would not do. Edison tried to understand what was happening. His assistant noticed that the carbon seemed to be coming from the end of the filament that was attached to the power supply, and seemed to be flying through the vacuum onto the walls of the bulb. Edison determined that not only was carbon flying through the vacuum, but that it carried a charge. That is, electricity was flowing not only through the filament but also through the evacuated bulb. In order to measure this flow, he made a special bulb with a third electrode, to which he could attach an instrument to measure the current. He reasoned that if the current would flow between the two ends of the filament, it would also flow to this third electrode. While he was proven to be right about the flow, Edison could not explain it, and the third electrode did not prevent blackening of the bulb, so he moved on to other experiments. But he did patent the new device, because he believed that it might have some commercial applications, such as measuring electric current. Although he did not realize it, Edison had discovered the basis of the electron tube (also called a vacuum tube). Many years later, modified light bulbs would be used not to make light, but to control a flow of electrons through a vacuum. The electron tube would become the basis of modern electronics. Years later, when he was elderly, the discovery of what became known as the “Edison Effect” was remembered, but because Edison had no idea what it was or how it worked, he is rarely given credit for this contribution to the development of electronics. Vervolg: Lee de Forest, Audion, de triode (1908) 10-03-2005 NERG,Utrecht
Lee de Forest 1906 (gefiled) Met een stuurelektrode werd versterking mogelijk en kon de elektronica ontwikkeld worden 10-03-2005 NERG,Utrecht
DeForest Spherical Audion DeForest Single Wing Audion c.1912 Tantalum Filaments “How does this blamed thingy work?” In 1906, Lee DeForest added the grid element to the Fleming Valve and created the triode vacuum tube, which he called the "Audion". It was the first purely electronic component that could amplify a signal and with it's invention, radio, television, and a host of other technologies became possible. He was issued US patent number 879,532 on February 18, 1908 for this invention. The earliest Audions had a single grid and plate (single wing); later ones had two grids and plates (double wing). In most bulbs, two filaments were provided so that the second could be used when the first one burned out. In some later bulbs intended for amplifier use, both filaments were used simultaneously for greater output. Earlier Audions used tantalum filaments; later ones used tungsten. The tantalum filament was not stable. It tended to warp in use, and often shorted to the grid. This warpage can be seen clearly in the photos.DeForest, ironically, had very little understanding of what made the Audion work and, more importantly, what made it work well. They were crudely made, and no two were exactly the same. They were expensive, unstable, difficult to use, and did not last long, but for a time, there was nothing better.As important as this invention was, it was not until the technology was licensed to major corporations (most notably Western Electric) that the Audion was developed into a truly practical device. Double Wing Audion c.1915 Tungsten Filaments Audion Carton c.1915 Double Wing Audion Home http://uv201.com/Tube_Pages/deforest_audion.htm 10-03-2005 NERG,Utrecht
Vervolg vacuüm buizen 1907 1926 1929 Triode; Tetrode, pentode We zien hier weer iets merkwaardigs De kathodestraalbuis was bekend voor de diode. Ook de rontgenbuis en de rontgenstraling werden ontwikkeld en ontdekt voor de diode. Dit kan verklaard worden door hyet vele experimenteren zonder een goed model van de onderhavige fysica Kathodestraalbuis: Karl Ferdinand Braun 1897 Televisie 1923 10-03-2005 NERG,Utrecht
Natuurkunde vóór 1900 Gilbert 1544-1603 benoemt elektrostatische kracht (ηλετρον = barnsteen) Coulomb 1736-1806 elektrische lading kwantificeerbaar (eenheid van lading) Coulombkracht Watt 1736-1819 Stoommachine Volta 1745-1827 depositie van lading bij elektrolyse, Voltacel Ampère 1775-1836 onderlinge kracht stroomvoerende draden Ørsted 1777-1851 wisselwerking tussen magneet en stroom (1820) Ohm 1789-1854 eenheid van weerstand Faraday 1791-1867 Materietransport bij elektrolyse (eenheid van capaciteit). Inductie (1831), elektrische en magnetische veldlijnen Joule 1818-1889 stroomvoerende draad ontwikkelt warmte Kirchhoff 1824-1887 serie en parallel stroomwetten Maxwell 1831-1879 wiskundige formulering veldtheorie Röntgen 1845-1923 Röntgenstralen, kristalstructuren (1901) Lorentz 1853-1928 Lorentzkracht; verwevenheid deeltjes-golven (1902) Voor 1900 was er nog geen goed atoommodel. Het electron was nog niet ontdekt. Men worsteklde met de dualiteitt van deeltjes en golven. Voor de golfverschijnselen dacht men een ether noodzakel9ijk diein feite erg on-fysische eigenschappen moest hebben 10-03-2005 NERG,Utrecht
Natuurkunde na 1900 Planck 1858-1947 kwantumtheorie 1920 Rutherford 1871-1937 atoommodel;radioactieve straling 1908 Einstein 1879-1955 relativiteitstheorie 1921 Bohr 1885-1962 atoommodel 1922 Debije 1884-1966 molecuul- en kristalstructuren 1936 Schrödinger 1887-1961 kwantummechanica 1933 Heisenberg 1901-1976 kwantummechanica; onzekerheidsprincipe 1932 Dirac 1902-1982 Kwantummechanica; golfvergelijking In de beginperiode van de vacuumbuizen was het electron nog niet als deeltje bekend In de dertiger jaren wordt de vastestoffysica ontwikkeld met de bandentheorie voor de halfgeleiders 10-03-2005 NERG,Utrecht
Octrooien 19e eeuw 1837 Thomas Davenport Electric motor 1839 Samuel Colt Revolver 1840 Samuel F.B. Morse Telegraph 1855 Isaac Singer Sewing Machine 1869 Leigh Burton Elec. resistance heater 1872 William Robinson Elec. train signaling 1873 Louis Pasteur Pasteurization Thomas Edison Improved telegraph Yeast process 1874 Alexander Graham Bell Telephone 1879 Charles Brush Carbon arc light 1880 Electric light In de tweede helft van de 19e eeuw vindt de tweede industriele revolutie oplaats met toepassing van elektriciteit 10-03-2005 NERG,Utrecht
Octrooien eind 19e eeuw 1874 Alexander Graham Bell Telephone 1880 Thomas Edison Electric light 1884 George Eastman Photographic film 1886 Elihu Thomson Electric welding 1887 Carl Gassner Dry cell battery 1888 Nikola Tesla AC synchronous motor Alternating current transmission Electric distribution 1890 Electric generator 1895 Rudolf Diesel Diesel engine 1897 Guglielmo Marconi Wireless telegraph 1900 Wireless transmission of electric power 10-03-2005 NERG,Utrecht
Octrooien begin 20e eeuw Nov. 13,1900 Valdemar Poulsen Magnetic tape recording June 4, 1901 Guglielmo Marconi Wireless telegraphy Nov. 5, 1901 Henry Ford Automobile Sept. 30,1902 Thomas Edison Motion picture camera June 28,1904 Wireless telegraph equip. Nov. 15,1904 King Gillette Gillette safety blade & razor Nov. 7,1905 John Fleming Two element vacuum tube Dec. 6,1906 Denwoody Wireless telegraphy system May 22,1906 O. & W. Wright Airplane Nov. 13,1906 Lee de Forest Radio tube detector Jan. 15,1907 Radio amplifier tube Feb. 18,1908 Triode Dec. 7,1909 Leo Baekeland Bakelite plastic Als we zien dat hier in feite al radiopatenten gegenereerd worden voordat de vacuumdiode is uitgevonden moeten we constateren dat er dus ook al voor die tijd wel een of ander niet lineair device of een niet-lineaire schakeling beschikbaar geweest moet zijn. Dat blijkt ook het geval Laten we eens kijken naar de uitvinding van Denwoody 10-03-2005 NERG,Utrecht
Vroege detector devices Cats-whisker: een metaaldraad contact op een mineraal zoals bijv. galeniet (PbS). Voorlopers van de Schottky diode of de puntcontact diode. De werking werd niet begrepen Kristalradio’s galeniet 10-03-2005 NERG,Utrecht
Draadloos telegrafie systeem Denwoody, 1906 Draadloos telegrafie systeem 10-03-2005 NERG,Utrecht
Na klik: carborundum detector: verbeterde versie uirt 1925 10-03-2005 NERG,Utrecht
Koolstof diodes waren in feite beter dan vacuum diode Thackeray, When tubes beat crystals: early radio detectors ;IEEE Spectrum March 1983 10-03-2005 NERG,Utrecht
10-03-2005 NERG,Utrecht Examples of early radio detectors RCA UX200 an argon filled detector triode Kenotron (rechts evacuated regulator diode Midden : ED 78 Duits (Telefunken?) carborundum detector, deksel links Twee Carborundum Co detectors voor thuis ontvangers Thackeray, When tubes beat crystals: early radio detectors ;IEEE Spectrum March 1983 10-03-2005 NERG,Utrecht
Thackeray, When tubes beat crystals: early radio detectors ;IEEE Spectrum March 1983 10-03-2005 NERG,Utrecht
Bardeen en Brattain octrooieren separaat van Shockley 17 Juni 1948 Bardeen en Brattain octrooieren separaat van Shockley 10-03-2005 NERG,Utrecht
William Shockley octrooieert als eenling de junctietransistor 26 juni 1948 William Shockley octrooieert als eenling de junctietransistor De junctie-diode wordt ondergebracht in een octrooi voor de bipolaire junctie transistor 10-03-2005 NERG,Utrecht
Shockley octrooieert diverse constructies (1951) 21 sept 1951 10-03-2005 NERG,Utrecht
Diverse specialisaties 10-03-2005 NERG,Utrecht
We komen in het tijdperk van de microelektronica en de Wet van Moore 10-03-2005 NERG,Utrecht
Halfgeleiderproductie in 2004: Omzet: 150 miljard $ 1018 (1 miljard x 1 miljard) transistoren / jaar 150 miljoen transistoren / persoon.jaar 5 transistoren per seconde / persoon 10-03-2005 NERG,Utrecht
In 100 jaar van buis naar nanotechnologie gate isolatie kanaal 45 nm MOST 10-03-2005 NERG,Utrecht