havo B Samenvatting Hoofdstuk 5

Slides:



Advertisements
Verwante presentaties
Samenvatting Verbanden.
Advertisements

havo A Samenvatting Hoofdstuk 2
Gelijkmatige toename en afname
havo B Samenvatting Hoofdstuk 6
havo A Samenvatting Hoofdstuk 10
havo A Samenvatting Hoofdstuk 7
vwo B Samenvatting Hoofdstuk 3
Stijgen en dalen constante stijging toenemende stijging
y is evenredig met x voorbeeld a N x 5 x 3
vwo A/C Samenvatting Hoofdstuk 2
vwo C Samenvatting Hoofdstuk 13
vwo C Samenvatting Hoofdstuk 11
horizontale lijn a = 0  y = getal
vwo B Samenvatting Hoofdstuk 2
vwo B Samenvatting Hoofdstuk 1
vwo A/C Samenvatting Hoofdstuk 5
vwo A/C Samenvatting Hoofdstuk 7
vwo A Samenvatting Hoofdstuk10
vwo B Samenvatting Hoofdstuk 7
vwo B Samenvatting Hoofdstuk 5
vwo A Samenvatting Hoofdstuk 12
vwo A Samenvatting Hoofdstuk 14
De grafiek van een lineair verband is ALTIJD een rechte lijn.
∙ ∙ f(x) = axn is een machtsfunctie O n even n oneven y y y y a > 0
De grafiek van een lineaire formule is ALTIJD een rechte lijn. algemene vergelijking : y = ax + b a =hellingsgetal of richtingscoëfficient altijd 1 naar.
Lineaire vergelijking met twee variabelen
Lineaire functies Lineaire functie
Hoofdstuk 5 Kleiner of kleiner gelijk of fout ???
De grafiek van een lineair verband is ALTIJD een rechte lijn.
Formules en de GR Met de GR kun je bijzonderheden van formules te weten komen. Eerst plot je de grafiek. Gebruik eventueel de optie ZoomFit (TI) of Auto.
Interval a-8 ≤ x < 3 [ -8, 3 › b4 < x ≤ 4½ ‹ 4, 4½ ] c5,1 ≤ x ≤ 7,3 [ 5,1 ; 7,3 ] d3 < x ≤ π ‹ 3, π ] -83 l l ○● 44½4½ l l ○● 5,17,3 l l ● 3π l l ○● ≤
De grafiek van een lineair verband is ALTIJD een rechte lijn.
Differentieer regels De afgeleide van een functie f is volgens de limietdefinitie: Meestal bepaal je de afgeleide niet met deze limietdefinitie, maar.
Intervallen a-8 ≤ x < 3 [ -8, 3 › b4 < x ≤ 4½ ‹ 4, 4½ ] c5,1 ≤ x ≤ 7,3 [ 5,1 ; 7,3 ] d3 < x ≤ π ‹ 3, π ] -83 l l ○● 44½4½ l l ○● 5,17,3 l l ● 3π l l ○●
Asymptoot is een lijn waar de grafiek op den duur mee samenvalt.
Lineaire vergelijkingen
Differentieer regels De afgeleide van een functie f is volgens de limietdefinitie: Meestal bepaal je de afgeleide niet met deze limietdefinitie, maar.
1 het type x² = getal 2 ontbinden in factoren 3 de abc-formule
havo A Samenvatting Hoofdstuk 5
Havo B Samenvatting Hoofdstuk 4. Interval a-8 ≤ x < 3 [ -8, 3 › b4 < x ≤ 4½ ‹ 4, 4½ ] c5,1 ≤ x ≤ 7,3 [ 5,1 ; 7,3 ] d3 < x ≤ π ‹ 3, π ] -83 l l ○● 44½4½.
havo A Samenvatting Hoofdstuk 3
havo D deel 3 Samenvatting Hoofdstuk 10
Vwo C Samenvatting Hoofdstuk 15. Formules en de GR Met de GR kun je bijzonderheden van formules te weten komen. Eerst plot je de grafiek. Gebruik eventueel.
havo B 5.1 Stelsels vergelijkingen
Lineaire formules Voorbeelden “non”-voorbeelden.
Lineaire Verbanden Hoofdstuk 3.
havo B Samenvatting Hoofdstuk 1
Vergelijkingen oplossen
Verbanden JTC’07.
Gelijkmatige toename en afname
Regels voor het vermenigvuldigen
Functies, vergelijkingen, ongelijkheden
havo B Samenvatting Hoofdstuk 3
Halveringstijd Havo 5 deel 3 Hoofdstuk 10 Opgave 33,34,37.
Snijpunt bepalen. Lijn p en lijn q snijden elkaar. Wat zijn de coördinaten van het snijpunt ?
Stelsels van vergelijkingen H5 deel 3 Hoofdstuk 10 Opgave 61, 62, 63.
1 VMBO-KGT deel Grafieken tekenen 1 1.
Hoofdstuk 3 Lineaire formules en vergelijkingen
1 VMBO BK deel Grafiek Grafiek tekenen 1 1.
Grafiek van lineaire formule
Grafiek van lineaire formule
havo A Samenvatting Hoofdstuk 10
Van grafiek naar formule
Keuzevoorlichting havo wiskunde AB.
3 vmbo-KGT Samenvatting Hoofdstuk 6
De grafiek van een lineair verband is ALTIJD een rechte lijn.
2 vmbo-t/havo Samenvatting Hoofdstuk 1 (vmbo-T)
3 vmbo-KGT Samenvatting Hoofdstuk 10
havo B Samenvatting Hoofdstuk 1
Voorkennis Wiskunde Les 7 Hoofdstuk 2/3: §2.5, 3.1 en 3.2.
Transcript van de presentatie:

havo B Samenvatting Hoofdstuk 5

Lineaire vergelijking met twee variabelen Algemene vorm ax + by = c de grafiek is een rechte lijn. vb.1 2y + 3x = 8 Om de grafiek te plotten moet je eerst y vrijmaken 2y = -3x + 8 y = -1½x + 4 voer in y1 = -1½x + 4 Je kunt de grafiek ook tekenen zonder de formule in te voeren in de GR. snijpunt met de y-as is (0, 4) rc = -1½ of je gebruikt de formule 2y + 3x = 8 je maakt een tabel met 2 punten vul bijv. x = 0 en x = 2 in dan krijg je de punten (0, 4) en (2, 1) Teken de punten en de lijn. y 4 ● ● : 2 -1½ 3 ● 2 1 ● -1 1 2 3 4 x -1 5.1

● Stelsels vergelijkingen y vb.2 Gegeven zijn de lijnen f : 2y + x = 4 en g : y – 3x = -5 het punt (2, 1) is het snijpunt van de lijnen of (2, 1) is de oplossing van 2y + x = 4 als van y – 3x = -5 we zeggen dat (2, 1) de oplossing is van het stelsel 2y + x = 4 y – 3x = -5 4 g 3 f 2 ● 1 -1 1 2 3 4 x -1 5.1

Algebraïsch oplossen van een stelsel vergelijkingen stap 1 : Kan elimineren door optellen ? 2y + x = 4 y – 3x = -5 3 1 stap 2 : Kan elimineren door aftrekken ? - + stap 3 : Kan elimineren door eerst te vermenigvuldigen en dan optellen of aftrekken ? 3y – 2x = -1 y + 4x = 9 nee nee x geëlimineerd Maakt niet uit welke vergelijking. invullen 6y + 3x = 12 y – 3x = -5 y = 1 2y + x = 4 2 · 1 + x = 4 2 + x = 4 x = 2 + 7y = 7 y = 1 - 2 : 7 de oplossing is (2, 1) 5.1

Hoe noteer je een uitwerking van een opgave bij gebruik van de GR? a Noteer de formules die je invoert. b Noteer de optie die je gebruikt en geef het resultaat. c Beantwoord de gestelde vraag. 5.2

Periodieke verschijnselen Een grafiek die zich steeds herhaalt noem je periodiek. De grafiek is een periodieke grafiek. Als iets iedere 2 uur herhaalt dan zeg je dat de periode 2 uur is. De evenwichtsstand is de horizontale lijn die precies door de grafiek loopt. Amplitude is het verschil tussen de evenwichtsstand en het hoogste punt of laagste punt. 5.2

voorbeeld hoogte in m. 6 periodiek verschijnsel 5 4 amplitude = 2 uur 3 evenwichtsstand = 3 m. amplitude = 2 uur 2 1 periode = 4 uur periode = 4 uur 1 2 3 4 5 6 7 8 t in uur 5.2 7

Trend Een lange-termijnontwikkeling heet een trend. De grafiek schommelt om een kromme die de trend weergeeft. Een trend kan zowel stijgend als dalend zijn. Schommelt de grafiek om een rechte lijn, dan heet die lijn de trendlijn. 5.2

Toenamendiagram De toenamen en afnamen van een grafiek kun je verwerken in een toenamendiagram 1. kies een stapgrootte 2. bereken voor elke stap de toename of afname 3. teken de staafjes omhoog bij toename en omlaag bij afname 4. teken het staafje bij de rechtergrens (bv toename van 3  4 teken je het staafje bij 4 ) 5.3

. . . . . voorbeeld ∆x = 1 [-1,0] [0,1] [1,2] [2,3] [3,4] ∆y 4 2 0,5 -0,5 2 . . y 4 . 3 . 2 1 x Je tekent de toenamen als verticale lijnstukjes bij de rechtergrens van het interval. -1 1 2 3 4 -1 5.3

opgave 29 5.3 constant dalend afnemend stijgend afnemend dalend toenemend dalend 5.3

Gemiddelde veranderingen rechts ∆t N omhoog ∆N · N2 N2 – N1 = ∆N dus gemiddelde verandering per tijdseenheid = ∆N : ∆t ∆N · N1 ∆t t1 t2 t t2 – t1 = ∆t 5.4

. . Het differentiequotiënt van y op het interval [xA,xB] is y B yB ∆y f(b) yB ∆y ∆y A f(a) yA ∆x x xA a ∆x b xB differentiequotiënt = ∆y : ∆x = gemiddelde verandering van y op [xA,xB] = r.c. = hellingsgetal van de lijn AB ∆y yB – yA f(b) – f(a) ∆x xB – xA b - a = = 5.4

voorbeeld differentiequotiënten en formules a voer in y1 = x³ - 3x + 5 b gemiddelde toename op [1,3] ∆y = f(3) – f(1) ∆y = 23 – 3 = 20 ∆x = 3 – 1 = 2 ∆y : ∆x = 20 : 2 = 10 c differentieqoutiënt op [-2,4] ∆y = f(4) – f(-2) ∆y = 57 – 3 = 54 ∆x = 4 - -2 = 6 ∆y : ∆x = 54 : 6 = 9 d hellingsgetal op [-3,1] ∆y = f(1) – f(-3) ∆y = 3 - -13 = 16 ∆x = 1 - -3 = 4 ∆y : ∆x = 16 : 4 = 4 y f x 5.4