havo A Samenvatting Hoofdstuk 5

Slides:



Advertisements
Verwante presentaties
Over stapgrootte en volgorde programmaregels
Advertisements

Havo A 5.1 Stijgen en dalen.
Samenvatting Verbanden.
havo A Samenvatting Hoofdstuk 2
Gelijkmatige toename en afname
havo B Samenvatting Hoofdstuk 6
havo A Samenvatting Hoofdstuk 10
havo A Samenvatting Hoofdstuk 7
dy dx De afgeleide is de snelheid waarmee y verandert voor x = xA
vwo B Samenvatting Hoofdstuk 3
Stijgen en dalen constante stijging toenemende stijging
y is evenredig met x voorbeeld a N x 5 x 3
vwo B Samenvatting Hoofdstuk 11
vwo A/C Samenvatting Hoofdstuk 2
Herhaling hfd. 1 en 2 havo.
vwo C Samenvatting Hoofdstuk 13
havo B Samenvatting Hoofdstuk 11
Verandering over een interval
horizontale lijn a = 0  y = getal
vwo B Samenvatting Hoofdstuk 2
vwo A/C Samenvatting Hoofdstuk 7
vwo B Samenvatting Hoofdstuk 7
vwo A Samenvatting Hoofdstuk 12
vwo C Samenvatting Hoofdstuk 14
vwo A Samenvatting Hoofdstuk 16
vwo A Samenvatting Hoofdstuk 14
vwo B Samenvatting Hoofdstuk 13
De grafiek van een lineair verband is ALTIJD een rechte lijn.
Lineaire vergelijking met twee variabelen
Lineaire functies Lineaire functie
Hoofdstuk 5 Kleiner of kleiner gelijk of fout ???
De grafiek van een lineair verband is ALTIJD een rechte lijn.
Formules en de GR Met de GR kun je bijzonderheden van formules te weten komen. Eerst plot je de grafiek. Gebruik eventueel de optie ZoomFit (TI) of Auto.
Goniometrische formules
Interval a-8 ≤ x < 3 [ -8, 3 › b4 < x ≤ 4½ ‹ 4, 4½ ] c5,1 ≤ x ≤ 7,3 [ 5,1 ; 7,3 ] d3 < x ≤ π ‹ 3, π ] -83 l l ○● 44½4½ l l ○● 5,17,3 l l ● 3π l l ○● ≤
De grafiek van een lineair verband is ALTIJD een rechte lijn.
Differentieer regels De afgeleide van een functie f is volgens de limietdefinitie: Meestal bepaal je de afgeleide niet met deze limietdefinitie, maar.
Intervallen a-8 ≤ x < 3 [ -8, 3 › b4 < x ≤ 4½ ‹ 4, 4½ ] c5,1 ≤ x ≤ 7,3 [ 5,1 ; 7,3 ] d3 < x ≤ π ‹ 3, π ] -83 l l ○● 44½4½ l l ○● 5,17,3 l l ● 3π l l ○●
Asymptoot is een lijn waar de grafiek op den duur mee samenvalt.
Differentieer regels De afgeleide van een functie f is volgens de limietdefinitie: Meestal bepaal je de afgeleide niet met deze limietdefinitie, maar.
Buigpunt en buigraaklijn
havo B Samenvatting Hoofdstuk 5
Evenredig Evenredig © Ing W.T.N.G. Tomassen. Wat is evenredig? Als x twee maal zo groot wordt dan Wordt y ook twee maal zo groot Evenredig.
Havo B Samenvatting Hoofdstuk 4. Interval a-8 ≤ x < 3 [ -8, 3 › b4 < x ≤ 4½ ‹ 4, 4½ ] c5,1 ≤ x ≤ 7,3 [ 5,1 ; 7,3 ] d3 < x ≤ π ‹ 3, π ] -83 l l ○● 44½4½.
havo D deel 3 Samenvatting Hoofdstuk 12
havo A Samenvatting Hoofdstuk 3
havo D deel 3 Samenvatting Hoofdstuk 10
Vwo C Samenvatting Hoofdstuk 15. Formules en de GR Met de GR kun je bijzonderheden van formules te weten komen. Eerst plot je de grafiek. Gebruik eventueel.
havo/vwo D Samenvatting Hoofdstuk 4
havo B 5.1 Stelsels vergelijkingen
Lineaire formules Voorbeelden “non”-voorbeelden.
Lineaire Verbanden Hoofdstuk 3.
Herhaling opgave 1 a) b) c) d) e) f) g) h) i)
havo B Samenvatting Hoofdstuk 1
Verbanden JTC’07.
havo B Samenvatting Hoofdstuk 7
Vergelijkingen van de tweede graad. Vergelijkingen van 2 de graad  Een vergelijking van de tweede graad geeft een verband tussen 2 onbekenden.  Bijvoorbeeld.
Halveringstijd Havo 5 deel 3 Hoofdstuk 10 Opgave 33,34,37.
1 VMBO-KGT deel Grafieken tekenen 1 1.
1 VMBO BK deel Grafiek Grafiek tekenen 1 1.
Grafiek van lineaire formule
6.4 Verhoudingstabel en grafiek Verhoudingstabel en grafiek
Grafiek van lineaire formule
havo A Samenvatting Hoofdstuk 10
Keuzevoorlichting havo wiskunde AB.
3 vmbo-KGT Samenvatting Hoofdstuk 6
De grafiek van een lineair verband is ALTIJD een rechte lijn.
3 vmbo-KGT Samenvatting Hoofdstuk 10
havo B Samenvatting Hoofdstuk 1
1 Twee grafieken van temperatuur en dagen.
Transcript van de presentatie:

havo A Samenvatting Hoofdstuk 5

Intervallen ● ○ l l -8 3 ○ ● l l 4 4½ ● ● l l 5,1 7,3 ○ ● l l 3 π ≤  [  ● <  ‹  ○ Intervallen ● ○ a -8 ≤ x < 3 [ -8 , 3 › b 4 < x ≤ 4½ ‹ 4 , 4½ ] c 5,1 ≤ x ≤ 7,3 [ 5,1 ; 7,3 ] d 3 < x ≤ π ‹ 3 , π ] l l -8 3 ○ ● l l 4 4½ ● ● l l 5,1 7,3 ○ ● l l 3 π 5.1

Oneindige intervallen a x ≤ 4½ ‹  , 4½ ] b x > -8 ● ‹ -8 ,  › l 4½ ○ l -8 5.1

Stijgen en dalen constante stijging toenemende stijging afnemende stijging constante daling toenemende daling afnemende daling 5.1

voorbeeld 5.1 toenemend stijgend op < -4 , -2 > toenemend dalend op < 1 , 3 > afnemend dalend op < -6 , -4 > 5 -6 -4 -2 toenemend stijgend op < 5 ,  > 1 3 afnemend dalend op < 3 , 5 > afnemend stijgend op < -2 , 1 > 5.1

Hoe noteer je een uitwerking van een opgave bij gebruik van de GR? a noteer de formules die je invoert b noteer de optie die je gebruikt en geef het resultaat c beantwoord de gestelde vraag 5.2

Periodieke verschijnselen een grafiek die zich steeds herhaalt noem je periodiek de grafiek is een periodieke grafiek als iets iedere 2 uur herhaalt dan zeg je dat de periode 2 uur is de evenwichtsstand is de horizontale lijn die precies door de grafiek loopt amplitude is het verschil tussen de evenwichtsstand en het hoogste punt of laagste punt 5.2

voorbeeld hoogte in m. 6 periodiek verschijnsel 5 4 amplitude = 2 uur 3 evenwichtsstand = 3 m. amplitude = 2 uur 2 1 periode = 4 uur periode = 4 uur 1 2 3 4 5 6 7 8 t in uur 5.2 8

Trend een lange-termijnontwikkeling heet een trend de grafiek schommelt om een kromme die de trend weergeeft een trend kan zowel stijgend als dalend zijn schommelt de grafiek om een rechte lijn, dan heet die lijn de trendlijn 5.2

Toenamendiagram De toenamen en afnamen van een grafiek kun je verwerken in een toenamendiagram 1. kies een stapgrootte 2. bereken voor elke stap de toename of afname 3. teken de staafjes omhoog bij toename en omlaag bij afname 4. teken het staafje bij de rechtergrens (bv toename van 3  4 teken je het staafje bij 4 ) 5.3

. . . . . voorbeeld ∆x = 1 [-1,0] [0,1] [1,2] [2,3] [3,4] ∆y 4 2 0,5 -0,5 2 . . y 4 . 3 . 2 1 x je tekent de toenamen als verticale lijnstukjes bij de rechtergrens van het interval -1 1 2 3 4 -1 5.3

· · Gemiddelde veranderingen rechts ∆t omhoog ∆N N N2 N1 t1 t2 t dus gemiddelde verandering per tijdseenheid = ∆N : ∆t ∆N · N1 ∆t t1 t2 t t2 – t1 = ∆t 5.4

. . het differentiequotiënt van y op het interval [xA,xB] is y B yB ∆y f(b) yB ∆y ∆y A f(a) yA ∆x x xA a ∆x b xB differentiequotiënt = ∆y : ∆x = gemiddelde verandering van y op [xA,xB] = r.c. = hellingsgetal van de lijn AB ∆y yB – yA f(b) – f(a) ∆x xB – xA b - a = = 5.4

voorbeeld ∆K K(b) – K(a) ∆P P(b) – P(a) = a gemiddelde snelheid op [-6,-4] is ∆K = 4 – 12 = -8 ∆P = -4 - -6 = 2 ∆K : ∆P = -8 : 2 = -4 gemiddelde snelheid op [-2,2] is ∆K = 6 – 6 = 0 ∆P = 2 - -2 = 4 ∆K : ∆P = 0 : 4 = 0 b differentiequotiënt op [-5,0] is ∆K = 0 – 4 = -4 ∆P = 0 - -5 = 5 ∆K : ∆P = -4/5 differentiequotiënt op [-5,2] is ∆K = 6 – 4 = 2 ∆P = 2 - -5 = 7 ∆K : ∆P = 2/7 12 6 6 6 4 4 -6 -5 -5 -4 -2 2 2 5.4