Download de presentatie
De presentatie wordt gedownload. Even geduld aub
GepubliceerdLodewijk Lemmens Laatst gewijzigd meer dan 9 jaar geleden
1
verhoudingen – breuken – procenten - kommagetallen
wiskunde in groep 7 en 8 verhoudingen – breuken – procenten - kommagetallen les 3
2
0. Warming-up Schoolreis Van de kinderen van De Driemaster ging
5/8 deel naar de Efteling en 1/5 deel naar Blijdorp. De overige 70 kinderen bleven op school. Hoeveel kinderen zitten er op de Driemaster? Gebruik het rechthoekmodel.
3
1. Lesoverzicht Warming-up Lesoverzicht Periodieke korte herhaling
Didactische Zeshoek oefenen Presentatie lesonderdelen benoemde breuken en de ondermaat kerninzichten breuken Verwerking breukenpracticum Evaluatie
4
2. Periodieke korte herhaling
Antwoorden op studievragen hfst 3 (verhoudingen) op Let op: studievragen zijn bedoeld om je te helpen bij het bestuderen; in het tentamen worden andere vragen gesteld!
5
2. Periodieke korte herhaling
1. deel - geheel evt. operator 2. deel - geheel 3. rationaal getal (als je gelijknamig maakt: verhouding) 4. a. deel - geheel b. deel - geheel 5. operator Waarom wordt dit genoemd?
6
2. Periodieke korte herhaling
1. rationaal getal 2. rationaal getal 3. operator 4. operator 5. deel – geheel 6. operator 7. n.v.t.
7
3. Presentatie lesonderdelen
Ophalen voorkennis Breukenpracticum – reader blz
8
3. Presentatie lesonderdelen
Ophalen voorkennis Breukenpracticum Drie verschillende taartjes: 1/4 + 2/5 met breukenstrookjes met rechthoekmodel
9
3. Presentatie lesonderdelen
Ophalen voorkennis Breukenpracticum 5/6 : 1/3 stap voor stap met benoemde breuken een verhaal bij 1/4 x 2/5
10
3. Presentatie lesonderdelen
Doelstellingen Na de les … … kun je kinderen de basisbewerkingen met breuken laten doen door de breuken te benoemen met een geschikte ondermaat … kun je van een getallenlijn de moeilijkheid aangeven voor het positioneren van breuken … kun je breuken positioneren op een getallenlijn door meten en redeneren, door ‘de breukenbus’ en door formeel opereren … kun je de denkmodellen voor breuken noemen
11
3. Presentatie lesonderdeel
Benoemde breuken en de ondermaat Weet je het nog? Wat betekent 3 x 1/2 1/2 x 3
12
3. Presentatie lesonderdeel
Benoemde breuken en de ondermaat 4/5 - 1/2 = ondermaat: meter van 10 dm 1 1/2 x 2/5 = ondermaat: reep van 10 stukken 4 1/2 : 1/6 = ondermaat: jaar van 12 mnd
13
3. Presentatie lesonderdeel
optellen en aftrekken met ‘benoemde breuken’ en een geschikte ‘ondermaat’ 4/5 - 1/2 = ondermaat: meter van 10 dm
14
3. Presentatie lesonderdeel
optellen en aftrekken met ‘benoemde breuken’ en een geschikte ‘ondermaat’ 4/5 - 1/2 = ondermaat: meter van 10 dm 4/5 meter = 8 dm 1/2 meter = 5 dm 8 dm – 5 dm = 3 dm 3 dm van een meter = 3/10 meter dus 4/5 – 1/2 = 3/10
15
3. Presentatie lesonderdeel
vermenigvuldigen met ‘benoemde breuken’ en een geschikte ‘ondermaat’ 1 1/2 x 2/5 = ondermaat: reep van 10 stukken
16
3. Presentatie lesonderdeel
vermenigvuldigen met ‘benoemde breuken’ en een geschikte ‘ondermaat’ 1 1/2 x 2/5 = ondermaat: reep van 10 stukken 2/5 reep = 4 stukken 1 1/2 x 2/5 reep = 1 1/2 x 4 stukken = 6 stukken 6 stukken van de reep = 6/10 reep = 3/5 reep dus 1 1/2 x 2/5 = 3/5
17
3. Presentatie lesonderdeel
delen met ‘benoemde breuken’ en een geschikte ‘ondermaat’ 4 1/2 : 1/6 = ondermaat: jaar van 12 mnd
18
3. Presentatie lesonderdeel
delen met ‘benoemde breuken’ en een geschikte ‘ondermaat’ 4 1/2 : 1/6 = ondermaat: jaar van 12 mnd 4 1/2 jaar : 1/6 jaar = 54 mnd : 2 mnd = 27 (Hoe vaak passen 2 mnd in 54 mnd? 27 keer) dus 4 1/2 : 1/6 = 27
19
3. Presentatie lesonderdeel
Breuken positioneren op de getallenlijn: 3/5 Gemakkelijk: 0 1 Moeilijker: 0 2 Verklaar! Kinderen zien 3/5 als 3 van de 5 (stukjes).
20
3. Presentatie lesonderdeel
Breuken positioneren op de getallenlijn meten en redeneren breukenbus formeel opereren
21
3. Presentatie lesonderdeel
Breuken positioneren op de getallenlijn meten en redeneren vergelijk 5/6 en 7/8 1. via het restant vergelijk 7/8 en 7/9 2. via verdelen vergelijk 6/9 en 7/9 3. via het kijken naar de tellers vergelijk 3/7 en 7/12 4. via de halve strook als ankerpunt vergelijk 1/2 en 1/3 5. via gelijknamig maken de breukenbus
22
3. Presentatie lesonderdeel
Breuken positioneren op de getallenlijn ‘de breukenbus’ In de Breukenstraat wonen de breuken van 0 t/m 1. Ze hebben allemaal een eigen adres. De 2-bus stopt twee keer, een keer in het midden en aan het eind. De 3-bus stopt drie keer op haltes die de straat in gelijke stukken verdelen. Etc.
23
3. Presentatie lesonderdeel
Breuken positioneren op de getallenlijn ‘de breukenbus’ Vraag: “Hoe kan ik bij 1/2 komen als ik bij 1/3 geweest ben?” A. Eerst met de 3-bus naar het einde en dan met de 2-bus terug naar het midden. B. Eerst de 3-bus terug nemen naar het begin en dan de 2-bus nemen naar het midden. C. Je kunt ook de 6-bus nemen. Dit antwoord is voor sommige leerlingen nog te moeilijk.
24
3. Presentatie lesonderdeel
Breuken positioneren op de getallenlijn ‘de breukenbus’ Vraag: “Welke bus stopt zowel bij bij 1/2 als bij 1/5?” Mogelijke oplossingswijze: Stopt de 2-bus bij 1/2 en 1/5? Nee, want je kunt de route van de 5-bus niet in tweeën delen. Stopt de 3-bus bij 1/2 en 1/5? Nee, want je kunt de route van de 3-bus niet in tweeën delen. …… Stopt de 10-bus bij 1/2 en 1/5? Ja, want je kunt 10 in tweeën en in vijven delen.
25
3. Presentatie lesonderdeel
Breuken positioneren op de getallenlijn ‘de breukenbus’ Vraag: “Welke bus stopt zowel bij bij 1/2 als bij 1/5?” Mogelijke oplossingswijze: Bij 1/2 stoppen de 2-, 4-, 6-, 8-, 10-, 12-, 14-, bus etc. Bij 1/5 stoppen de 5-, 10-, 15-, 20-, bus etc.
26
3. Presentatie lesonderdeel
Breuken positioneren op de getallenlijn ‘de breukenbus’ Vraag: “Welke bus stopt zowel bij bij 1/2 als bij 1/5?” Mogelijke oplossingswijze: halte 1 2 3 4 5 6 7 bus 8 10 12 14 halte 1 2 3 4 5 6 7 bus 10 15 20 25 30 35
27
3. Presentatie lesonderdeel
Breuken positioneren op de getallenlijn formeel opereren - gelijknamig maken
28
3. Presentatie lesonderdeel
Drie methoden om breuken te vergelijken 1. concreet rekenen met een passende ondermaat b.v een eierdoos 2. modelmatig / schematisch notatie is nog gebonden aan de context b.v. rechthoek tekenen voor eierdozen b.v. de breukenbus a.h.v. dubbele getallenlijn 3. formeel gelijknamig maken
29
3. Presentatie lesonderdeel
Voorkennis ophalen Breuken - contexten verdeelsituaties meetsituaties
30
3. Presentatie lesonderdeel
Breuken - denkmodellen strook rechthoekmodel cirkel 24 3/4 1 2/4 1/4 8 32
31
3. Presentatie lesonderdeel
Breuken - rekenmanieren Gecijferdheid 3 Uit een fles schenk ik 3/5 deel, er blijft 30 cl over in de fles. Bereken de inhoud van de fles. Gecijferdheid 6 Bereken met de verdeeleigenschap: 5 x 4 6/11
32
5. Evaluatie Doelen bereikt?
… kun je kinderen de basisbewerkingen met breuken laten doen door de breuken te benoemen met een geschikte ondermaat? … kun je van een getallenlijn de moeilijkheid aangeven voor het positioneren van breuken? … kun je breuken positioneren op een getallenlijn door meten en redeneren, door ‘de breukenbus’ en door formeel opereren? … kun je de denkmodellen voor breuken noemen?
33
Volgende les … lees uit: TAL(2005). Breuken, ... Groningen: Noordhoff
blz. 63 – 88 (kerninzichten breuken) maak de studievragen over hfst 4 (breuken) (antwoorden t.z.t. op
Verwante presentaties
© 2024 SlidePlayer.nl Inc.
All rights reserved.