De presentatie wordt gedownload. Even geduld aub

De presentatie wordt gedownload. Even geduld aub

Het Tijdperk van Complexiteit College 4

Verwante presentaties


Presentatie over: "Het Tijdperk van Complexiteit College 4"— Transcript van de presentatie:

1 Het Tijdperk van Complexiteit College 4
Tom de Greef Het Tijdperk van Complexiteit College 4 Van Moleculaire naar Modulaire Biologie

2 De Levende Cel Volume: 10-11 - 10-9 liter 108 - 1012 Moleculen
David Goodsell:

3 De Levende Cel II Inner Life of a Cell: BioVisions Harvard Te zien op:

4 Overzicht college De levende cel als complex systeem
Karakteristieken complex systeem De levende cel als complex systeem De moleculaire vs. systeembiologie approach Netwerktheorie Topologie analyse van cellulaire netwerken Synthetische Biologie

5 Eigenschappen complexe systemen
Karakteristieke kenmerken complexe systemen Groot aantal componenten Veelvoud van interacties De interacties tussen de componenten zijn sterk niet-lineair Zelforganiserend Adaptief Robuust  Fragiel

6 De levende cel als complex systeem (I)
Groot aantal componenten: 109 en heterogeen (DNA, metabolieten, eiwitten) Interacties tussen de componenten: eiwit-eiwit, DNA-eiwit interacties Niet-lineair: Michaelis-Menten

7 De levende cel als complex systeem (II)
Adaptief: Cel past zich aan aan zijn omgeving Signalen  interactie moleculen Robuust: Regelsystemen in cel houden concentratie, pH en temperatuur constant. Zelforganisatie: Geen gecentraliseerd bestuur??

8 De moleculaire biologie
Ontstaan in de jaren vijftig van de vorige eeuw Functie van de moleculen staat centraal - DNA - Eiwitten - Metabolieten Reductionistische wetenschap Levende cel Isolatie & Studie Integratie

9 DNA Deoxyribonucleic acid Functie: dragen van genetische informatie
Dubbele helix, 4 basenparen (A, T, G, C) Sequentie: volgorde basenparen Gen: DNA sequentie die codeert voor een eiwit Transcriptie & Translatie: het proces waarbij DNA wordt gelezen en vertaald naar eiwit

10 Eiwitten Functie:- Communicatie - Transport - Structuur
- Chemische omzetting (katalysator)

11 Metabolieten Functie: - Energiebron - Opbouw van de cel
- Signaal moleculen Suiker (glucose) ATP vetzuren

12 Centrale dogma van de moleculaire biologie
Francis Crick (1958) Lineaire stroom van informatie Complexiteit cel: hoeveelheid DNA! 1:1 relatie gen en ziektebeeld

13 Van functie naar interacties
Humaan genoom project Complete DNA sequentie in kaart gebracht Interactie tussen de moleculen niet bekend Systeembiologie: interacties i.p.v. functie ?

14 Systeembiologie Ongeveer 10 jaar oud
Interacties tussen de moleculen staat centraal Geen lineaire stroom van informatie Holistische wetenschap

15 De levende cel als netwerk
Interactie =

16 Thema: netwerken

17 Grafentheorie Verzameling punten (knopen) verbonden door kanten (edges) Het aantal knopen wordt de orde (N) van een graaf genoemd Het aantal kanten wordt de grootte (M) van een graaf genoemd N = 6 M = 10

18 Grafentheorie (II) Ongerichte graaf Gerichte graaf

19 Aangrenzendheids matrix
Graaf kan als matrix, A, worden weergegeven Matrix: m rijen en n kolommen (m x n matrix) Matrix heeft elementen aij Het element aij is gelijk aan 1 als er een kant tussen knoop i en j is Ongerichte graaf symmetrische matrix Gerichte graaf niet symmetrische matrix a12 a21

20 Grafentheorie (III) Simpele graaf: - Geen kant die een knoop met zichzelf verbindt - Maximaal 1 kant tussen twee knopen simpel niet-simpel niet-simpel Volledige graaf: Simpele graaf waarin alle knopen met elkaar verbonden zijn

21 Grafentheorie (IV) Het maximaal aantal kanten, Mmax, in een volledige graaf met N knopen: Elke knoop heeft een kant met de N-1 andere knopen Het totale aantal kanten is dan N(N-1) Dubbeltelling: N(N-1)/2 Voorbeeld N = 3 2 2 2

22 Grafentheorie (V) Graad: De graad ki van knoop i is het aantal kanten die deze knoop heeft Ongerichte graaf Gerichte graaf Gemiddelde graad: Voor een ongerichte graaf:

23 Gradenverdeling, P(k):
Grafentheorie (VI) Gradenverdeling, P(k): Functie die de kans geeft dat een willekeurig gekozen knoop graad k heeft Cumulatieve gradenverdeling Pc(k): Functie die de kans geeft dat een willekeurig gekozen knoop een graad groter dan k heeft Tel aantal knopen met k = 1, 2, kmax Delen door N (totaal aantal knopen)

24 Grafentheorie (VII) Clustering: knoop A verbonden met knoop B en knoop C met B dan verhoogde kans dat knoop A met C is verbonden C B A Clusteringcoëfficiënt C van knoop i: Met Mi = het aantal kanten tussen de ni buren van knoop i Mmax = het maximaal aantal kanten tussen de n buren van i

25 Grafentheorie (VII) Voorbeeld CA = 1/10 MA = 1

26 Grafentheorie (VII) Gemiddelde clusteringcoëfficiënt <C>:
N = totaal aantal knopen netwerk Modulair netwerk <C> = 1

27 Grafentheorie (VII) Gemiddelde clusteringcoëfficiënt <C>:
Clusteringcoëfficiënt-graden correlatiefunctie, C(k): Gemiddelde clusteringcoëfficiënt van alle knopen met graad k Sterk geclusterde knopen met lage graad

28 Grafentheorie (VIII) Assortatief Disassortatief k = 9 k = 9 k = 9
de gemiddelde graad van alle buren van een knoop met graad k

29 Netwerkmodellen Verschillende soorten netwerken (grafen) mogelijk:
Random netwerken Schaalvrije netwerken Hiërarchisch schaalvrije netwerken Karakterisatie verschillende modellen door gradenverdeling, P(k) en clusteringcoëfficiënt-graden correlatiefunctie C(k)

30 Random netwerken Erdös-Rényi (1960) Start met N knopen
Kies twee knopen Kant tussen twee knopen met kans p Voorbeeld N = 10, Mmax = 45 <M>=0.15*45 =6.75 <M>=0.1*45 =4.5

31 Random netwerken (II) Gemiddelde graad <k>
Gradenverdeling: binomiaalverdeling, in de limiet van grote N Poissonverdeling Gemiddelde graad <k> Homogene gradenverdeling 67% binnen standaarddeviatie clusteringcoëfficiënt-graden correlatiefunctie C(k)

32 Percolatie in Random Netwerken
S = Aantal knopen in de grootste cluster Aantal knopen netwerk 1 S p Kritische percolatie treshold

33 Schaalvrije netwerken
Inhomogene gradenverdeling Meeste knopen lage graad, enkele knopen hoge graad (hubs) Barabási & Albert (1999) Groei door preferentiële aanhechting: - Elk tijdstip nieuwe knoop - Nieuwe knoop wordt verbonden met oude knopen via m kanten - Kans van nieuwe kant is afhankelijk van de graad van de oude knoop

34 Schaalvrije netwerken (II)
Gradenverdeling: met  =3 Hub clusteringcoëfficiënt-graden correlatiefunctie C(k)

35 Robuustheid knoopverstoring
Complexe systemen: robuust en fragiel t.o.v. verstoringen Mogelijke verstoring netwerk: verwijderen van knopen Resultaat: fragmentatie netwerk Maat voor fragmentatie netwerk: S, fractie knopen in de grootste cluster S = 7/19

36 Robuustheid knoopverstoring

37 Modulair Schaalvrije Netwerken
Biologische netwerken: schaalvrij karakter maar ook modulair! Schaalvrij netwerk Barabási & Albert: niet modulair Modulair Schaalvrij netwerk: Barabási & Jeong (2000) Schaalvrij Modulair

38 Modulair Schaalvrije Netwerken
a) Start met een klein netwerk van N sterk geclusterde knopen b) Kopieer dit netwerk Y maal c) Verbind buitenste knopen replica’s met centrale knoop origineel d) Verbind centrale knoop replica’s met elkaar e) Herhaal stap a, b, c

39 Modulair Schaalvrije Netwerken (II)
Gradenverdeling: met  =2-3 (afhankelijk van N en Y) clusteringcoëfficiënt-graden correlatiefunctie C(k)

40 Topologie Analyse van Biologische Netwerken
Worden de moleculaire netwerken die gevormd wordt door moleculen in de levende cel het beste beschreven door een random, schaalvrij of modulair schaalvrij netwerk? Eiwit-eiwit interactie netwerk Metabole netwerken

41 Eiwit-eiwit interactie netwerk
Eiwit = knoop Kant = interactie tussen twee eiwitten Ongericht netwerk Y2H methode (yeast two hybrid) = 3000 eiwitten 4000 interacties C. elegans

42 Eiwit-eiwit interactie netwerk (II)
Biergist - Schaalvrij Dataset Aantal eiwitten interacties Graden Exponent () MIPS 6745 5434 2.34 DIP 5798 20098 2.50 Uetz 2115 4480 2.32 Ito 3280 8868 2.44

43 Eiwit-eiwit interactie netwerk (III)
Schaalvrij: netwerk gevormd door preferentiële aanhechting Oorzaak: genduplicatie Genduplicatie: gen dubbel gekopieerd tijdens celdeling

44 Connectiviteit vs. evolutionaire leeftijd
Oudste eiwitten = meeste interacties Suggereert preferentiële aanhechting

45 Metabole netwerken Voorbeeld: citroenzuur cyclus
Functie: omzetten suikers in energie (ATP, GTP)

46 Metabole netwerken (II)
Gradenverdeling, P(k) Clusteringcoëfficiënt-graden correlatiefunctie, C(k) Modulair!

47 Modulair ontwerp van de cel
Modules Specifieke taak Verhogen robuustheid Evolutionair voordeel evolutie

48 Synthetische Biologie: Herontewerpen van een Cel
combineert biologie en ingenieursprincipes om nieuwe biologische functies en systemen te ontwerpen en te bouwen die niet aanwezig zijn in de natuur die nieuwe functies zijn vaak nuttig voor mens, dier of milieu → groot potentieel!

49 Herontwerpen van een cellulair netwerk

50 Functionele Micro-organismen
Energie Productie Productie van waterstof en ethanol uit biomassa Conversie van licht in waterstof.

51 Functionele Micro-organismen (II)
Biotherapeutica “ Killer” bacteriën voor tumoren Vernietigen tumor cellen op commando

52 International Genetically Engineered Machine
Internationale competitie voor bachelor en master studenten (+/- 50 universiteiten) Ontwerp zelf een cel met een nieuwe functie! TU/e vanaf 2012, interesse???

53 Aanbevolen materiaal


Download ppt "Het Tijdperk van Complexiteit College 4"

Verwante presentaties


Ads door Google