Download de presentatie
De presentatie wordt gedownload. Even geduld aub
GepubliceerdSebastiaan Bauwens Laatst gewijzigd meer dan 10 jaar geleden
1
vwo C Samenvatting Hoofdstuk 11
2
∙ ∙ f(x) = axn is een machtsfunctie O n even n oneven y y y y a > 0
lijnsymmetrisch met de y-as puntsymmetrisch met (0, 0) 11.1
3
Grafieken van machtsfuncties verschuiven
xtop bereken je door wat tussen haakjes staat 0 te maken. y y = x² top (0, 0) y = ( x – 4 )² 4 naar rechts top (4, 0) y = ( x – 4 )² + 3 3 omhoog top (4, 3) y = 2 ( x – 4 )² + 3 parabool smaller top hetzelfde y = a ( x - p )² + q top (p, q) O x algemeen grafiek van translatie (p, q) beeldgrafiek y = axn y = a(x – p)n + q 11.1
4
voorbeeld a y = 0,3x4 y = 0,3(x + 5)4 + 6 y = -0,9(x + 5)4 - 18 top (-5, -18) b y = 0,3x4 y = -0,9x4 y = -0,9(x + 5)4 + 6 top (-5, 6) Bij de translatie (-5, 6) vervang je in de formule x door x + 5 en tel je 6 bij de functiewaarde op. translatie (-5, 6) verm. met -3 tov de x-as Bij de vermenigvuldiging t.o.v. de x-as met -3, vermenigvuldig je de functiewaarde met -3. verm. met -3 tov de x-as translatie (-5, 6) 11.1
5
Los op (exact) x² < 2x + 3 f(x) = x² g(x) = 2x + 3 f(x) = g(x)
x = -1 v x = 3 aflezen uit de schets -1 < x < 3 Werkschema :het oplossen van de ongelijkheid Schets de grafieken van f en g. Los de vergelijking f(x) = g(x) op. Lees uit de schets de oplossingen af. y f Lees het antwoord af op de x-as f(x) < g(x) wanneer ligt de grafiek van f onder die van g. -1 3 x g 11.1
6
Werkschema: het tekenen van de grafiek van een wortelfunctie
Bereken het domein en de coördinaten van het beginpunt. Maak een tabel. Teken de grafiek. Werkschema: het oplossen van wortelvergelijkingen Maak de wortel vrij. Kwadrateer het linker- en rechterlid en los de verkregen vergelijking op. Controleer of de oplossingen van de gekwadrateerde vergelijking oplossingen zijn van de gegeven vergelijking. 11.2
7
Wortelvergelijkingen oplossen
voorbeeld 2x + √x = 10 √x = 10 – 2x x = (10 – 2x)2 x = 100 – 40x + 4x2 -4x2 + 40x + x – 100 = 0 -4x2 + 41x – 100 = 0 D = (41)2 – 4 · -4 · -100 D = 81 x = x = 6¼ v x = 4 Isoleer de wortelvorm. Kwadrateer het linker- en het rechterlid. Los de vergelijking op. -41 ± √81 -8 Controleer of de oplossingen kloppen. voldoet niet voldoet 11.2
8
∙ ∙ Asymptoten y 4 1x f (x) = standaardfunctie
De grafiek heet een hyperbool. f (0) bestaat niet. Je hebt een horizontale asymptoot en een verticale asymptoot. Een asymptoot is een lijn waarmee de grafiek op den duur vrijwel mee samenvalt. 3 2 ∙ 1 y = 0 -2 -1 1 2 3 x ∙ -1 -2 x = 0 11.3
9
Transformaties en gebroken functies
y 1x f(x) = standaardfunctie g(x) = translatie 2 naar rechts 1 omhoog 4 1 x - 2 3 ∙ 2 ∙ y = 1 1 ∙ y = 0 -2 -1 1 2 3 x ∙ -1 -2 x = 0 x = 2 11.3
10
Gebroken vergelijkingen
Regels voor het algebraïsch oplossen van gebroken vergelijkingen = geeft A = 0 = geeft A = C = geeft A = 0 v B = C = geeft AD = BC A B 0 1 = 0 = kan niet een breuk is nul als de teller nul is en de noemer niet A B C B 1 0 A B A C 0 0 A B C D 0 5 Controleer of geen noemer nul wordt. 11.3
11
Asymptoot is een lijn waar de grafiek op den duur mee samenvalt.
De grafiek van f(x) = gx f(x) = gx met g constant en g > 0 is een exponentiële functie g > 1 0 < g < 1 y y Asymptoot is een lijn waar de grafiek op den duur mee samenvalt. 1 1 x x O O De grafiek is stijgend bereik 〈 0, 〉 de x-as is asymptoot De grafiek is dalend bereik 〈 0, 〉 de x-as is asymptoot 11.4
12
Het effect van transformaties op y = gx
verm. t.o.v. de x-as met a y = a · gx Vermenigvuldig in de formule de functiewaarde met a. De asymptoot is y = 0. y = gx translatie (p, 0) y = gx – p Vervang in de formule x door x – p. De asymptoot is y = 0. y = gx translatie (0, q) y = gx + q Tel in de formule q op bij de functiewaarde. De asymptoot is y = q. 11.4
13
Rekenregels voor machten
11.4
14
Soorten groei 11.4
Verwante presentaties
© 2024 SlidePlayer.nl Inc.
All rights reserved.