Beeldverwerking Prof. dr. ir. W. Philips Didactisch materiaal bij de cursus Academiejaar Tel: 09/ Fax: 09/
© W. Philips, Universiteit Gent, versie: 24/11/ a. 2 Copyright notice This powerpoint presentation was developed as an educational aid to the renewed course “Image processing” (Beeldverwerking), taught at the University of Gent, Belgium as of This presentation may be used, modified and copied free of charge for non-commercial purposes by individuals and non-for-profit organisations and distributed free of charge by individuals and non-for-profit organisations to individuals and non-for-profit organisations, either in electronic form on a physical storage medium such as a CD-rom, provided that the following conditions are observed: 1.If you use this presentation as a whole or in part either in original or modified form, you should include the copyright notice “© W. Philips, Universiteit Gent, ” in a font size of at least 10 point on each slide; 2.You should include this slide (with the copyright conditions) once in each document (by which is meant either a computer file or a reproduction derived from such a file); 3. If you modify the presentation, you should clearly state so in the presentation; 4.You may not charge a fee for presenting or distributing the presentation, except to cover your costs pertaining to distribution. In other words, you or your organisation should not intend to make or make a profit from the activity for which you use or distribute the presentation; 5. You may not distribute the presentations electronically through a network (e.g., an HTTP or FTP server) without express permission by the author. In case the presentation is modified these requirements apply to the modified work as a whole. If identifiable sections of that work are not derived from the presentation, and can be reasonably considered independent and separate works in themselves, then these requirements do not apply to those sections when you distribute them as separate works. But when you distribute the same sections as part of a whole which is a work based on the presentation, the distribution of the whole must be on the terms of this License, whose permissions for other licensees extend to the entire whole, and thus to each and every part regardless of who wrote it. In particular note that condition 4 also applies to the modified work (i.e., you may not charge for it). “Using and distributing the presentation” means using it for any purpose, including but not limited to viewing it, presenting it to an audience in a lecture, distributing it to students or employees for self-teaching purposes,... Use, modification, copying and distribution for commercial purposes or by commercial organisations is not covered by this licence and is not permitted without the author’s consent. A fee may be charged for such use. Disclaimer: Note that no warrantee is offered, neither for the correctness of the contents of this presentation, nor to the safety of its use. Electronic documents such as this one are inherently unsafe because they may become infected by macro viruses. The programs used to view and modify this software are also inherently unsafe and may contain bugs that might corrupt the data or the operating system on your computer. If you use this presentation, I would appreciate being notified of this by . I would also like to be informed of any errors or omissions that you discover. Finally, if you have developed similar presentations I would be grateful if you allow me to use these in my course lectures. Prof. dr. ir. W. Philips Department of Telecommunications and Information ProcessingFax: University of GentTel: St.-Pietersnieuwstraat 41, B9000 Gent, Belgium
Wavelets Herhaling
© W. Philips, Universiteit Gent, versie: 24/11/ a. 4 Beeldtransformaties Elk beeld b ( x,y ) van MN pixels kan worden geschreven als een lineaire combinatie van exact MN lineair onafhankelijke basisbeelden p i ( x,y ) x 012 M- 1 b ( x,y ) y N- 1 Het stelsel heeft een unieke oplossing voor elk willekeurig beeld b ( x,y ) de basisfuncties zijn lineair onafhankelijk Bij gegeven basisfuncties p i ( x,y ) berekent men de a i voor een gegeven beeld b ( x,y ) door oplossen stelsel MN vergelijkingen MN onbekenden MN×MN vaste getallen
© W. Philips, Universiteit Gent, versie: 24/11/ a. 5 Orthogonale transformaties Bij een orthogonale transformatie is de basismatrix P orthogonaal: P t P=I en zijn de basisfuncties p i ( x,y ) orthonormaal: Parseval geldt (cfr. Fouriertransformatie): (in totaal 2( MN) 2 ipv. 0.66( MN) 3 bewerkingen!) 0 als i ≠j 1 als i=j = Voordeel: berekenen coëfficiënten vereist geen stelsel oplossen: b=Pa veel sneller, maar nog steeds veel te traag voor praktische toepassingen op beelden van realistische afmetingen P t b=P t Pa=a of dus: a=P t b ( a i ) 2 is de bijdrage van basisfunctie p i ( x,y ) in de beeldenergie
© W. Philips, Universiteit Gent, versie: 24/11/ a. 6 Toepassingen Goede transformaties concentreren de beeldenergie in een klein aantal coëfficiënten (cfr. de fouriertransformatie) toepassingen beeldcompressie (zie verder) ruisonderdrukking, b.v.b. wavelet-gebaseerde ruisonderdrukking ruizig beeld: b r ( x,y )= b ( x,y ) +n ( x,y ) ruizige coëfficiënten a i + i na ontruizen: b ’( x,y ) met coëfficiënten a i + i of 0 verwachte kwadratische afwijking: som loopt over alle nul- gestelde coëfficiënten indien beeld en ruis statistisch onafhankelijk ingevoerde beelddistorsie verwijderde ruis Principe ruisonderdrukking: vervang de coëfficiënten waarvan je vermoedt dat a i,j = 0 in een ruisvrij beeld door 0 Goede ruisonderdrukking vereist keuze goede transformatie optimale energiecompactie correcte inschatting van welke coëfficiënten klein/groot zijn
© W. Philips, Universiteit Gent, versie: 24/11/ a. 7 Principes… Beeldmodel van Fouriergebaseerde restauratie (Wienerfilter) “beelden bevatten vooral energie bij lage frequenties” x b(x)b(x) f x |B 1 ( f x )| f x |B 2 ( f x )| f x |B 3 ( f x )| f x |B ( f x )| Realistischer (lokaal) model: beelden bestaan uit de volgende componenten: grote egale gebieden: weinig variatie, “laagfrequent” gebieden met texturen: veel variatie, “hoogfrequent” randen tussen de gebieden: plotse variatie Elke component heeft een eigen typisch spectrum maar in het globaal spectrum worden de lokale spectra gemengd
© W. Philips, Universiteit Gent, versie: 24/11/ a. 8 Recursieve subbandontbindingen g(t)g(t) h(t)h(t) 2 2 lage frekwenties hoge frekwenties a g(t)g(t) h(t)h(t) 2 2 b g(t)g(t) h(t)h(t) 2 2 c d g ’( t ) h ’( t ) c d g ’( t ) h ’( t ) b x(t)x(t) g ’( t ) h ’( t ) a y(t)y(t) Perfecte reconstructie: de filters worden zo ontworpen dat y ( t ) =x ( t ) analysefilterbank reconstructiefilterbank
© W. Philips, Universiteit Gent, versie: 24/11/ a. 9 BF: bemonsteringsfrequentie (Hz) DB: ruwe schatting van de aanwezige (fysische) frequenties als fractie van f s, in de veronderstelling dat er geen aliasing optreedt Subbandontbinding: Voorbeeld BF: f s DB: | f | [0, 0.5] DB: | f | [0, 0.25]DB: | f | [0.25, 0.5] DB: | f | [0, 0.125]DB: | f | [0.125, 0.25] BF: f s / 2 BF: f s / 4
© W. Philips, Universiteit Gent, versie: 24/11/ a. 10 Voorbeeld Beeldenergie geconcentreerd in het laagdoorlaat (LLLL) beeld en in minder mate rond de randen in de detailbeelden 4 soorten detailbeelden, naargelang de laatste vertikale en horizontale filteroperatie LL-beeld: één beeld, hier LL LL HL-groep: H L, LH LL, LLH LLL, … LH-groep: L H, LL LH, LLL LLH, … HH-groep: H H, LH LH, LLH LLH, … Similariteit: detailbeelden van een groep lijken op elkaar; bij de niet- redundante transformatie hebben ze wel een verschillende resolutie (aantal pixels)
© W. Philips, Universiteit Gent, versie: 24/11/ a. 11 Verband met wavelets xxx xxxx xxx xxx xxx xxxx xxx xxxx x frequentie tijd volgnummer n k De basisfuncties kn ( t ) worden discrete wavelets genoemd Ze zijn (circulair) verschoven versies van elkaar: Het reconstructieproces is lineair Het gereconstrueerd signaal is een lineaire functie van de uitgangsmonsters A k,n :
© W. Philips, Universiteit Gent, versie: 24/11/ a. 12 Op diepere niveaus (grotere k ) zijn de basisfuncties (en de impulsresponsen) “langer” dan de op minder diepe niveau’s: de lengte van de basisfunctiesis ruwweg m 2 k- 1 k= 4:8 basisfuncties t= 64 t= 32 k= 2: 16 basisfuncties Voorbeeld: QMF-wavelets J= 3 en N= 64 k= 1:32 basisfuncties k= 3:8 basisfuncties zijn er minder basisfuncties: op niveau k zijn er N / 2 k basisfuncties demo: daubwavelets.xls