Differentieer regels De afgeleide van een functie f is volgens de limietdefinitie: Meestal bepaal je de afgeleide niet met deze limietdefinitie, maar.

Slides:



Advertisements
Verwante presentaties
H3 Tweedegraads Verbanden
Advertisements

havo B Samenvatting Hoofdstuk 6
H1 Basis Rekenvaardigheden
dy dx De afgeleide is de snelheid waarmee y verandert voor x = xA
vwo B Samenvatting Hoofdstuk 3
Stijgen en dalen constante stijging toenemende stijging
y is evenredig met x voorbeeld a N x 5 x 3
Tangens In een rechthoekige driehoek kun je met tangens werken.
havo B Samenvatting Hoofdstuk 12
vwo B Samenvatting Hoofdstuk 11
vwo A/C Samenvatting Hoofdstuk 2
vwo B Samenvatting Hoofdstuk 10
horizontale lijn a = 0  y = getal
vwo B Samenvatting Hoofdstuk 2
vwo B Samenvatting Hoofdstuk 1
vwo A Samenvatting Hoofdstuk 9
vwo A/C Samenvatting Hoofdstuk 5
vwo A/C Samenvatting Hoofdstuk 7
vwo A Samenvatting Hoofdstuk10
vwo B Samenvatting Hoofdstuk 7
vwo B Samenvatting Hoofdstuk 6
vwo A Samenvatting Hoofdstuk 12
vwo B Samenvatting Hoofdstuk 4
vwo A Samenvatting Hoofdstuk 16
Regels voor het vermenigvuldigen
De eenheidscirkel y α P x O (1, 0)
Riemannsommen De oppervlakte van het vlakdeel V in figuur a is
De grafiek van een lineair verband is ALTIJD een rechte lijn.
De grafiek van een machtsfunctie
De eenheidscirkel y α P x O (1, 0) Speciale driehoeken.
Rekenregels van machten
Optimaliseren van oppervlakten en lengten
Voorbeeld a5a · 4b = 20ab b-5a · 4a = -20a 2 c-2a · -6a = 12a 2 d5a · -b · 6c = -30abc e-5b · 3a · -2 = 30ab f-2 · -a = 2a opgave 1 a7a + 8a = 15a b6a.
∙ ∙ f(x) = axn is een machtsfunctie O n even n oneven y y y y a > 0
Rekenregels voor wortels
Machten en logaritmen Een stukje geschiedenis
Lineaire functies Lineaire functie
Regelmaat in getallen … … …
De grafiek van een lineair verband is ALTIJD een rechte lijn.
Formules en de GR Met de GR kun je bijzonderheden van formules te weten komen. Eerst plot je de grafiek. Gebruik eventueel de optie ZoomFit (TI) of Auto.
Goniometrische formules
De grafiek van een lineair verband is ALTIJD een rechte lijn.
Differentieer regels De afgeleide van een functie f is volgens de limietdefinitie: Meestal bepaal je de afgeleide niet met deze limietdefinitie, maar.
Radiaal Er is een hoekmaat waarbij de lengte van de boog van de eenheidscirkel gelijk is aan de draaiingshoek α. booglengte PQ = hoek α booglengte = 1.
Asymptoot is een lijn waar de grafiek op den duur mee samenvalt.
Differentieer regels De afgeleide van een functie f is volgens de limietdefinitie: Meestal bepaal je de afgeleide niet met deze limietdefinitie, maar.
1 het type x² = getal 2 ontbinden in factoren 3 de abc-formule
havo B Samenvatting Hoofdstuk 2
havo B Samenvatting Hoofdstuk 8
Welk beeld bij.
ribwis1 Toegepaste wiskunde, ribPWI Lesweek 01
ribwis1 Toegepaste wiskunde – Differentieren Lesweek 7
ribWBK11t Toegepaste wiskunde Lesweek 02
havo D deel 3 Samenvatting Hoofdstuk 12
havo A Samenvatting Hoofdstuk 3
havo D deel 3 Samenvatting Hoofdstuk 10
Vwo C Samenvatting Hoofdstuk 15. Formules en de GR Met de GR kun je bijzonderheden van formules te weten komen. Eerst plot je de grafiek. Gebruik eventueel.
Tweedegraadsfuncties
Voorbeeld Bereken de diepte van het water. Aanpak
H4 Differentiëren.
Hoofdstuk 9 havo KWADRATEN EN LETTERS
havo B Samenvatting Hoofdstuk 1
3FD na de vakantie !! Wiskunde deel B + Geodriehoek !!! + potlood !! + gum !! + rekenmachine !! Koop het als je het niet hebt !
Het kwadraat van een getal
Differentieer regels De afgeleide van een functie f is volgens de limietdefinitie: Meestal bepaal je de afgeleide niet met deze limietdefinitie, maar.
havo B Samenvatting Hoofdstuk 3
De grafiek van een lineair verband is ALTIJD een rechte lijn.
havo B Samenvatting Hoofdstuk 1
3 vmbo-KGT Samenvatting Hoofdstuk 9
Transcript van de presentatie:

Differentieer regels De afgeleide van een functie f is volgens de limietdefinitie: Meestal bepaal je de afgeleide niet met deze limietdefinitie, maar door te differentiëren. Je kent al een aantal differentieerregels: Differentieerregel 1 (machtsregel): Als f(x) = cxn dan is f'(x) = ncxn – 1 voor elke c en voor gehele positieve n. Differentieerregel 2 (constante-regel): Als f(x) = c dan is f'(x) = 0. Differentieerregel 3 (somregel): Als f(x) = u(x) ± v(x) dan is f'(x) = u'(x) ± v'(x).

Voorkennis f(x) = ax3 f’(x) = 3ax² g(x) = ax4 g’(x) = 4ax3 h(x) = ax5 oude exponent ervoor zetten f(x) = ax3 f’(x) = 3ax² g(x) = ax4 g’(x) = 4ax3 h(x) = ax5 h’(x) = 5ax4 algemeen geldt : k(x) = axn k’(x) = n · axn-1 nieuwe exponent 1 minder (4-1=3) 12.1

Voorkennis werkschema: het algebraïsch berekenen van extreme waarden 1 bereken f’(x). 2 los algebraïsch op f’(x) = 0. 3 voer de formule van f in op de GR plot en schets de grafiek kijk in de grafiek of je met max. en/of min. te maken hebt. 4 bereken de y-coördinaten van de toppen en noteer het antwoord in de vorm max. is f(…) = … en min. is f(…) = … raaklijn in een top is horizontaal  afgeleide is 0 12.1

De afgeleide functie Bij een functie hoort een hellingfunctie. I.p.v. hellingfunctie wordt meestal de naam afgeleide functie of afgeleide gebruikt. notatie : f’ (f-accent) regels voor de afgeleide : f(x) = a geeft f’(x) = 0 f(x) = ax geeft f’(x) = a f(x) = ax² geeft f’(x) = 2ax 7.1

voorbeeld f(x) = (2x – 7)(8 + x) f(x) = 16x + 2x² - 56 – 7x eerst haakjes wegwerken voorbeeld f(x) = (2x – 7)(8 + x) f(x) = 16x + 2x² - 56 – 7x f(x) = 2x² + 9x – 56 f’(x) = 2 · 2x + 9 f’(x) = 4x + 9 dezelfde termen optellen somregel van differentiëren

Andere regels ?!? De productfunctie van f en g is dan: p(x) = f(x) · g(x) = x3 · x2. Je zou kunnen vermoeden dat de afgeleide van p gewoon het product is van f' en g': p'(x) = f'(x) ·g'(x) = 3x2 · 2x. Maar dat is fout! Immers p(x) = x5 en dus moet p'(x) = 5x4 zijn. Op dezelfde wijze kun je nagaan dat ook de quotiëntfunctie q(x) =  f(x) / g(x)  niet eenvoudig kan worden gedifferentieerd door de afgeleide van de teller f te delen door die van de noemer g.

De productregel De quotiëntregel 7.1

De productregel: Als p(x) = f(x) · g(x) dan is p'(x) = f'(x) · g(x) + f(x) · g'(x). Bewijs : Volgens de limietdefinitie van de afgeleide is:

v.b. productregel

f (x) = (4x2 – 1)(3x + 2) f’ (x) = 8x · (3x + 2) + (4x2 – 1) · 3 opgave 5a f (x) = (4x2 – 1)(3x + 2) f’ (x) = 8x · (3x + 2) + (4x2 – 1) · 3 Stel k : y = ax + b a = f’ (-1) = 17 k : y = 17x + b yA = f (-1) = -3 dus A(-1, -3). Dus k : y = 17x + 14. y = 17x + b -3 = 17 · -1 + b 14 = b

Opgave 7

Opgave 8

O(∆ABC) = ½ · AC · AB AC = OC – OA = 4 – p opgave 9a O(∆ABC) = ½ · AC · AB AC = OC – OA = 4 – p AB = yB = f (p) = p2 – 2p + 3 Dus O = ½(4 – p)(p2 – 2p + 3) O = (2 - ½p)(p2 – 2p + 3)

opgave 9b In de schets van de grafiek van O als functie van p is te zien dat O maximaal is voor p =

De ABC-formule ax2 + bx + c = 0 De discriminant D = b2 – 4ac D < 0 geeft geen oplossingen. D = 0 geeft 1 oplossing. D > 0 geeft 2 oplossingen. 12.2

Opgave 17

opgave 19 a Stel k : y = ax + b dus Dus 12.2

opgave 19 b rcraaklijn = -3, dus f’ (x) = -3 x2 = 1 x = -1 v x = 1 f(-1) = -5 en f(1) = 5 De raakpunten zijn (-1, -5) en (1, 5)

opgave 19 c f’ (x) = 0 geeft x2 = 4 x = -2 v x = 2 max. is f(-2) = -4 en min. is f(2) = 4

opgave 19 d f’ (x) = 2 geeft x2 = -4 Omdat een kwadraat niet negatief kan zijn, heeft de vergelijking x2 = -4 geen oplossingen. Dus er is geen raaklijn met rc = 2.

Opgave 23

opgave 24 a geeft f’ (x) = 0 geeft x = 4 f (4) = 4 · √4 – 3 · 4 = -4 Min. is f(4) = -4. b rcraaklijn = f’ (0) = 1½ · √0 – 3 = -3 Raaklijn y = -3x c rcraaklijn = 3 dus f’ (x) = 3 1½√x – 3 = 3 1½√x = 6 √x = 4  x = 16 f (16) = 16 dus A(16, 16) raaklijn l : y = 3x + b 16 = 3 · 16 + b -32 = b l : y = 3x - 32

De kettingregel: Als s(x) = f (g(x)) dan is s‘ (x) = f‘ (g(x)) · g‘ (x). Bewijs : Volgens de limietdefinitie van de afgeleide: Verder is g(x + h) ≈ g(x) + h · g'(x) (lineaire benadering van functie g). En dus: Als h naar 0 nadert, dan nadert ook h · g'(x) naar 0 (als g'(x) bestaat.) En daarom vind je: s'(x)=f'(g(x))⋅g'(x) .

v.b. kettingregel

De kettingregel Kettingregel: De afgeleide van een kettingfunctie is het product van de afgeleiden van de schakels De kettingregel Kettingregel: Ga bij het berekenen van de afgeleide van een kettingfunctie y = f (x) als volgt te werk. Schrijf f als een ketting van twee functies. Bereken van ieder van de twee functies de afgeleide. Druk het product van de afgeleide functies uit in x. 12.3

Opgave 29

y opgave 31 a f (x) = (½x2 - 2x)3 b Stel y = (½x2 – 2x)3 = u3 met u = ½x2 – 2x en f’ (x) = 3u2 · (x – 2) = 3(½x2 – 2x)2 · (x – 2) f’ (x) = 0 geeft 3(½x2 – 2x)2 · (x – 2) = 0 ½x2 – 2x = 0 v x – 2 = 0 x(½x – 2) = 0 v x = 2 x = 0 v x = 4 v x = 2 c Stel l : y = ax + b a = f’ (6) = 3(½ · 62 – 2 · 6)2(6 – 2) = 432 dus l : y = 432x + b yA = f(6) = (½ · 62 – 2 · 6)3 = 216 dus A(6, 216) f x O 216 = 432 · 6 + b 216 = 2592 + b -2376 = b l : y = 432x - 2376

Opgave 35

Opgave 32

Opgave 38

Sinus, cosinus en tangens y sos cas toa P (xP,yP) PQ OP yP 1 1 1 sin α = = = yP cos α = = = xP tan α = = yP α OQ OP xP 1 x ∟ O xP Q A (1,0) yp xp PQ OQ 12.4

De exacte-waarden-cirkel 12.4

∙ ∙ ∙ ∙ opgave 43 Los op f (x) = 0 met domein [0, 2π]. sin2(x) + sin(x) = 0 sin(x)(sin(x) + 1) = 0 sin(x) = 0 v sin(x) = -1 x = k · π v x = 1½π + k · 2π Op domein [0, 2π] geeft dat de nulpunten x = 0 v x = π v x = 2π v x = 1½π f (x) ≤ 0 geeft x = 0 v π ≤ x ≤ 2π. y f ∙ ∙ ∙ ∙ x O ½π π 1½π 2π

opgave 46a 2 sin (½x) = 1 sin (½x) = ½ ½x = π + k · 2π v ½x = π + k · 2π x = π + k · 4π v x = π + k · 4π y 1 π ½ π sinα = yP α x -1 O 1 -1

De afgeleide van y = sin(x) en y = cos(x) f (x) = sin(x) geeft f’ (x) = cos(x) g (x) = cos(x) geeft g’ (x) = -sin(x) opgave 52a f (x) = cos(2x) Stel f (x) = cos(2x) = cos(u) met u = 2x f’ (x) = f’ (x) = -sin(u) · 2 f’ (x) = -sin(2x) · 2 = -2 sin(2x) 12.5

opgave 52b g (x) = x cos(x) g’ (x) = [x · cos(x)]’ g’ (x) = [x]’ · cos(x) + x · [cos(x)]’ g’ (x) = 1 · cos(x) + x · - sin(x) g’ (x) = cos(x) – x sin(x) g’

opgave 55b g (x) = x2 sin(3x) g’ (x) = [x2 · sin(3x)]’ g’ (x) = [x2]’ · sin(3x) + x2 · [sin(3x)]’ g’ (x) = 2x · sin(3x) + x2 · 3 cos(3x) g’ (x) = 2x sin(3x) + 3x2 cos(3x) g’

j’ opgave 57d j (x) = x + 3 sin2(x) j’ (x) = [x + 3 (sin(x))2]’ j’ (x) = 1 + 3 · 2 sin(x) · cos(x) j’ (x) = 1 + 6 sin(x) · cos(x) j’ 12.5

In de praktijk gaat het bij problemen vaak om het vinden van een maximum of minimum. Voorbeelden van optimaliseringsproblemen zijn: Bij welke afmetingen is de oppervlakte bij een gegeven omtrek het grootst ? Wat zijn de afmetingen van de doos met de grootste inhoud die je uit een gegeven rechthoekig stuk karton kunt maken ? Bij welke route horen de laagste kosten ? 12.6

opgave 65a 72 dm3 Stel de hoogte is h dm. K = kosten bodem + kosten zijkanten

opgave 65b geeft geeft geeft Dus K is minimaal bij de afmetingen 6 bij 3 bij 4 dm. De minimale kosten zijn = 21,6 euro

opgave 67 €10 De oppervlakte is x · y = 75 dus y = De kosten van de afrastering zijn K = 10x + 20(x + 2y) = 30x + 40y K = 30x + 40 · = 30x + = [30x + 3000x-1]’ = 30 – 3000x-2 = 30 – = 0 geeft 30 = 30x2 = 3000 x2 = 100 x = 10 v x = -10 De kosten zijn minimaal bij de afmetingen 10 m en 7½ m. 75 x €20 €20 y €20 75 x 3000 x x dK dx y 3000 x2 dK dx dK dx 3000 x2 x 10

opgave 68a K = kosten langs het bos + kosten in het weiland K = y · 60 + (x + y) · 15 K = 60y + 15x + 15y K = 15x + 75y O = xy O =1200

opgave 68b geeft geeft geeft Dus kosten zijn minimaal bij de afmetingen 77,5 bij 15,5 m. De minimale kosten zijn ≈ 2324 euro

opgave 68c geeft Voer in De optie intersect geeft x ≈ 52,60 en x ≈ 114,1 geeft geeft Aangezien Wunderink de rechthoek minder lang en smal wil zal hij kiezen voor de afmetingen 52,6 bij 22,8 m.

K r opgave 70 a De inhoud is I = πr2h , dus 500 = πr2h. dus h = De materiaalkosten zijn K = πr2 · 1 + πr2 · 2 + 2πr · 1 · 2 + 2πrh · 1 = 3πr2 + 4πr + 2πrh . K = 3πr2 + 4πr + 2πr = 3πr2 + 4πr + Voer in y1 = 3πx2 + 4πx + De optie minimum geeft x ≈ 3,5. De materiaalkosten zijn minimaal bij de afmetingen r ≈ 3,5 cm en h ≈ 12,6 cm. 500 πr2 onderkant bovenkant rand van deksel mantel 500 πr2 1000 r K b 1000 x 445,1 r 3,5

г l l opgave 72 a AC + BC = 12 – x Omdat AC = BC is AC = = 6 - ½x b Pythagoras in ∆ADC : CD 2 + AD 2 = AC 2 CD 2 = AC 2 – AD 2 CD 2 = (6 - ½x)2 – (½x)2 CD 2 = 36 – 6x + ¼x2 - ¼x2 = 36 – 6x CD = √(36 – 6x) c O = ½ · AB · CD O = ½x √(36 – 6x) 12 - x 2 г l l D x

Opgave 73 200-x

Opgave 75a&b

Opgave 75c&d

Opgave 75c&d

Opgave 76

Opgave 77

Opgave 79