vwo A Samenvatting Hoofdstuk11

Slides:



Advertisements
Verwante presentaties
Bij een herhaald experiment, met telkens dezelfde kans op succes gebruiken we de binomiale kansverdeling Een binomiale kansverdeling wordt gekenmerkt door.
Advertisements

havo B Samenvatting Hoofdstuk 6
Kansbomen Veel kansexperimenten bestaan uit 2 of meer experimenten, denk maar aan: - het gooien met 3 dobbelstenen - het gooien met een dobbelsteen en.
havo A Samenvatting Hoofdstuk 9
Kansen berekenen Paaseitjes • We hebben 60 paaseitjes – 30 melk – 20 puur – 10 wit • Dat zijn dus: 10 wit en 50 anders • Marjan pakt 5 paaseitjes. Zonder.
Regels bij kansrekeningen
H1 Basis Rekenvaardigheden
havo A Samenvatting Hoofdstuk 6
havo/vwo D Samenvatting Hoofdstuk 2
dy dx De afgeleide is de snelheid waarmee y verandert voor x = xA
vwo B Samenvatting Hoofdstuk 3
“Verschillen” een statistiek hoofdstuk
vwo A/C Samenvatting Hoofdstuk 6
Herhaling kansrekenen ?!?
aantal gunstige uitkomsten aantal mogelijke uitkomsten
Regels bij kansrekeningen
aantal gunstige uitkomsten aantal mogelijke uitkomsten
havo A Samenvatting Hoofdstuk 11
havo A Samenvatting Hoofdstuk 8
vwo C Samenvatting Hoofdstuk 9
vwo B Samenvatting Hoofdstuk 10
Blok 11 les 7 Breuken. 1. Ik heb …… dingen Ik verdeel in ….. gelijke delen van de delen noem ik … Dit deel telt ….. dingen.
vwo B Samenvatting Hoofdstuk 1
vwo A/C Samenvatting Hoofdstuk 5
vwo A/C Samenvatting Hoofdstuk 7
vwo A Samenvatting Hoofdstuk 13
vwo A Samenvatting Hoofdstuk 15
vwo B Samenvatting Hoofdstuk 7
vwo A Samenvatting Hoofdstuk 12
vwo C Samenvatting Hoofdstuk 14
vwo C Samenvatting Hoofdstuk 12
vwo A Samenvatting Hoofdstuk 16
Regels bij kansrekeningen
Regels bij kansrekeningen SomregelHebben de gebeurtenissen G 1 en G 2 geen gemeenschappelijke uitkomsten, dan is P(G 1 of G 2 ) = P(G 1 ) + P(G 2 ). ComplementregelP(gebeurtenis)
Kansbomen Veel kansexperimenten bestaan uit 2 of meer experimenten, denk maar aan: - het gooien met 3 dobbelstenen - het gooien met een dobbelsteen en.
Regels bij kansrekeningen
Differentieer regels De afgeleide van een functie f is volgens de limietdefinitie: Meestal bepaal je de afgeleide niet met deze limietdefinitie, maar.
aantal gunstige uitkomsten aantal mogelijke uitkomsten
Differentieer regels De afgeleide van een functie f is volgens de limietdefinitie: Meestal bepaal je de afgeleide niet met deze limietdefinitie, maar.
Discrete stochasten Onderwerpen Stochasten (random variables)
Continue kansverdelingen
Deze les wordt verzorgd door de Kansrekening en statistiekgroep Faculteit W&I TU/e.
Populatiegemiddelden: recap
Methodologie & Statistiek I Toetsen van proporties 7.1.
Statistiek voor Dataverwerking
Vwo C Samenvatting Hoofdstuk 15. Formules en de GR Met de GR kun je bijzonderheden van formules te weten komen. Eerst plot je de grafiek. Gebruik eventueel.
havo/vwo D Samenvatting Hoofdstuk 1
havo/vwo D Samenvatting Hoofdstuk 4
Statistiekbegrippen en hoe je ze berekent!!
1 van 8 Bernoulli-stochasten & Binomiale stochasten © CI 2003.
Voorrangsregels bij rekenen (1)
Introductie en Kennismaking
Mens erger je niet! Amersfoort, 9 oktober Deze workshop De aanleiding De eerste les voor de leerlingen Het vervolg Aandacht voor gebruik van de.
Bewerkingen met breuken Les 37.
Gooien met 1 en 2 dobbelstenen
Statistiek Deel 3. Inductieve statistiek
Kansverdelingen Bij MW vwo A/C deel 1 hfdst 7. Twee belangrijke kansverdelingen Binomiaal Twee mogelijkheden (Wel of niet) Vaste kans (“met terugleggen”)
Hypergeometrische verdeling Snel en foutloos. Hypergeom Twee mogelijkheden: wel / niet Geen vaste kans Vast aantal ‘pogingen’ n (steekproef) Alleen aantal.
Kansrekening Herhaling H1 , H4 &H6
Binomiale verdeling Snel en foutloos.
Teachers Teaching with Technology™ Simulaties en klassieke kansproblemen.
Kansverdelingen Kansverdelingen Inleiding In deze presentatie gaan we kijken naar hoe kansen zijn verdeeld. We gaan in op verschillende.
Inhoud Breuken (optellen, aftrekken, vermenigvuldigen en delen).
Het verhaal van de Statistiek met de TI-84
Theorie B Kansbomen gebruiken
Kansen van Briemen.
Complexe problemen Opdelen met somregel en productregel
Kansrekening van Briemen.
Telproblemen.
Vergelijkingen van de vorm ax + b = c oplossen
Transcript van de presentatie:

vwo A Samenvatting Hoofdstuk11

Regels bij kansrekeningen aantal gunstige uitkomsten aantal mogelijke uitkomsten Kansdefinitie van Laplace P(G) = Somregel Voor elke uitsluitende gebeurtenissen G1 en G2 geldt P(G1 of G2) = P(G1) + P(G2). Complementregel P(gebeurtenis) = 1 – P(complement-gebeurtenis). Productregel Bij twee onafhankelijke kansexperimenten geldt P(G1 en G2) = P(G1) · P(G2). Bij een kleine steekproef uit een grote populatie mag je trekken zonder terugleggen opvatten als trekken met terugleggen. 11.1

Voorbeeld somregel 4 2 6 1 4 3 6 0 . . = + ≈ 0,333 10 3 10 3 4 0 6 3 In een vaas zitten 4 rode, 2 blauwe en 4 groene knikkers, Nancy pakt 3 knikkers uit de vaas. a) P(2 of 3 rood) = P(2 rood) + P(3 rood) b) P(minder dan 2 groen) = P(0 groen) + P(1 groen) 4 2 6 1 4 3 6 0 . . = + ≈ 0,333 10 3 10 3 4 0 6 3 4 1 6 2 . . = + ≈ 0,667 10 3 10 3 11.1

De complementregel P(minder dan 8 witte) = P(0 w)+P(1 w)+P(2 w)+ P(3 w)+P(4 w)+P(5 w)+ P(6 w)+P(7 w) = 1 – P(8 witte) P(gebeurtenis + P(complement-gebeurtenis) = 1 P(gebeurtenis) = 1 – P(complement-gebeurtenis) 11.1

Het vaasmodel Bij het pakken van knikkers uit een vaas heb je met combinaties te maken. P(2r, 2w, 1b) = ? Volgens de kansdefinitie van Laplace is die kans Het aantal mogelijke uitkomsten is het aantal manieren om 5 knikkers uit de totaal 15 knikkers te pakken. Dat kan op manieren. Het aantal gunstige uitkomsten is het aantal manieren om 2r uit de 8r, 2w uit 4w en 1b uit 3b te pakken. Dat kan op P(4r, 1w, 2b) = ≈ 0,168 aantal gunstige uitkomsten aantal mogelijke uitkomsten 15 5 8 2 4 2 3 1 . . manieren. 2+2+1=5 8 2 4 2 3 1 . . 8+4+3=15 15 5 11.1

Berekeningen met breuken 11.2

Bernoulli-experimenten Kansexperimenten waarbij het uitsluitend om de gebeurtenissen succes en mislukking gaat, heten Bernoulli-experimenten. De complement-gebeurtenis van succes is mislukking. De kans op succes geven we aan met p. 11.3

Binomiaal kansexperiment Bij een binomiaal kansexperiment is : n het aantal keer dat het experiment wordt uitgevoerd X het aantal keer succes p de kans op succes per keer de kans op k keer succes is gelijk aan P(X = k) = · pk · (1 – p)n – k. n k 11.3

De notaties binompdf(n, p, k) en binomcdf(n, p, k) 11.3

11.3

Werkschema: binomiale kansen berekenen Omschrijf de betekenis van de toevalsvariabele X Noteer de gevraagde kans met X en herleid deze kans tot een vorm met binompdf of binomcdf. Bereken de gevraagde kans met de GR. P(X minder dan 4) = P(X < 4) = P(X ≤ 3) P(X tussen 5 en 8) = P(X ≤ 7) – P(X ≤ 5) = P(X = 6) + P(X = 7) 11.4

De binomiale verdeling met onbekende n opgave 63 X = het aantal treffers. Voor welke n is P(X ≥ 5) > 0,9, oftewel voor welke n is 1 – P(X ≤ 4) > 0,9 ? TI 1 – binomcdf(n, 0.4, 4) > 0,9 Voer in y1 = 1 – binomcdf(x, 0.4, 4). Maak een tabel en lees af voor n = 17 is y1 ≈ 0,874 voor n = 18 is y1 ≈ 0,906. Dus minstens 18 vrije worpen. Casio 1 – P(X ≤ 4) > 0,9 Voor welke n is P(X ≤ 4) < 0,1 ? Proberen geeft voor n = 17 is P(X ≤ 4) ≈ 0,126 voor n = 18 is P(X ≤ 4) ≈ 0,094. Dus minstens 18 vrije worpen. 11.4

De verwachtingswaarde E(X) van de toevalsvariabele X Stel de kansverdeling van X op. Vermenigvuldig elke waarde van X met de bijbehorende kans. Tel de uitkomsten op. De som is E(X). Dus E(X) = x1 · P(X = x1) + x2 · P(X = x2) + … + xn · P(X = xn). 11.5

De standaardafwijking van een toevalsvariabele 11.5

De somregel voor de standaardafwijking Voor elk tweetal onafhankelijke toevalsvariabelen X en Y geldt de somregel voor de standaardafwijking σx+ y = √ σ2x + σ2y VAR(X) = σ2x (de variantie van X) σ2x+ y = σ2x + σ2y dus VAR(X + Y) = VAR(X) + VAR(Y) 11.5