vwo A/C Samenvatting Hoofdstuk 7

Slides:



Advertisements
Verwante presentaties
Havo A 5.1 Stijgen en dalen.
Advertisements

havo A Samenvatting Hoofdstuk 2
Gelijkmatige toename en afname
havo B Samenvatting Hoofdstuk 6
vwo B Samenvatting Hoofdstuk 10
havo A Samenvatting Hoofdstuk 7
dy dx De afgeleide is de snelheid waarmee y verandert voor x = xA
vwo B Samenvatting Hoofdstuk 3
Stijgen en dalen constante stijging toenemende stijging
y is evenredig met x voorbeeld a N x 5 x 3
havo B Samenvatting Hoofdstuk 12
vwo A/C Samenvatting Hoofdstuk 2
vwo D Samenvatting Hoofdstuk 9
vwo C Samenvatting Hoofdstuk 13
vwo C Samenvatting Hoofdstuk 11
vwo B Samenvatting Hoofdstuk 9
vwo B Samenvatting Hoofdstuk 10
horizontale lijn a = 0  y = getal
vwo B Samenvatting Hoofdstuk 2
vwo B Samenvatting Hoofdstuk 1
vwo A/C Samenvatting Hoofdstuk 5
vwo A Samenvatting Hoofdstuk10
vwo B Samenvatting Hoofdstuk 7
vwo A Samenvatting Hoofdstuk 12
vwo C Samenvatting Hoofdstuk 14
vwo B Samenvatting Hoofdstuk 15
vwo A Samenvatting Hoofdstuk 16
vwo A Samenvatting Hoofdstuk 14
vwo B Samenvatting Hoofdstuk 13
Riemannsommen De oppervlakte van het vlakdeel V in figuur a is
Optimaliseren van oppervlakten en lengten
Lineaire vergelijking met twee variabelen
Lineaire functies Lineaire functie
Hoofdstuk 5 Kleiner of kleiner gelijk of fout ???
De grafiek van een lineair verband is ALTIJD een rechte lijn.
Formules en de GR Met de GR kun je bijzonderheden van formules te weten komen. Eerst plot je de grafiek. Gebruik eventueel de optie ZoomFit (TI) of Auto.
Differentieer regels De afgeleide van een functie f is volgens de limietdefinitie: Meestal bepaal je de afgeleide niet met deze limietdefinitie, maar.
Interval a-8 ≤ x < 3 [ -8, 3 › b4 < x ≤ 4½ ‹ 4, 4½ ] c5,1 ≤ x ≤ 7,3 [ 5,1 ; 7,3 ] d3 < x ≤ π ‹ 3, π ] -83 l l ○● 44½4½ l l ○● 5,17,3 l l ● 3π l l ○● ≤
De grafiek van een lineair verband is ALTIJD een rechte lijn.
Differentieer regels De afgeleide van een functie f is volgens de limietdefinitie: Meestal bepaal je de afgeleide niet met deze limietdefinitie, maar.
Intervallen a-8 ≤ x < 3 [ -8, 3 › b4 < x ≤ 4½ ‹ 4, 4½ ] c5,1 ≤ x ≤ 7,3 [ 5,1 ; 7,3 ] d3 < x ≤ π ‹ 3, π ] -83 l l ○● 44½4½ l l ○● 5,17,3 l l ● 3π l l ○●
Lineaire vergelijkingen
Differentieer regels De afgeleide van een functie f is volgens de limietdefinitie: Meestal bepaal je de afgeleide niet met deze limietdefinitie, maar.
Buigpunt en buigraaklijn
1 het type x² = getal 2 ontbinden in factoren 3 de abc-formule
havo A Samenvatting Hoofdstuk 5
havo B Samenvatting Hoofdstuk 5
ribwis1 Toegepaste wiskunde – Exponentiele functies Lesweek 5
ribwis1 Toegepaste wiskunde – Differentieren Lesweek 7
ribWBK11t Toegepaste wiskunde Lesweek 02
Havo B Samenvatting Hoofdstuk 4. Interval a-8 ≤ x < 3 [ -8, 3 › b4 < x ≤ 4½ ‹ 4, 4½ ] c5,1 ≤ x ≤ 7,3 [ 5,1 ; 7,3 ] d3 < x ≤ π ‹ 3, π ] -83 l l ○● 44½4½.
havo D deel 3 Samenvatting Hoofdstuk 12
havo A Samenvatting Hoofdstuk 3
havo D deel 3 Samenvatting Hoofdstuk 10
Vwo C Samenvatting Hoofdstuk 15. Formules en de GR Met de GR kun je bijzonderheden van formules te weten komen. Eerst plot je de grafiek. Gebruik eventueel.
havo/vwo D Samenvatting Hoofdstuk 4
havo B 5.1 Stelsels vergelijkingen
Lineaire formules Voorbeelden “non”-voorbeelden.
H4 Differentiëren.
Herhaling opgave 1 a) b) c) d) e) f) g) h) i)
havo B Samenvatting Hoofdstuk 1
Verbanden JTC’07.
B vwo vwo B - 11e editie tweede fase Jan Dijkhuis, Roeland Hiele
havo B Samenvatting Hoofdstuk 3
Vwo6 WiskA Toepassing van differentiaalrekenen Extra opgaven.
Grafiek van lineaire formule
De grafiek van een lineair verband is ALTIJD een rechte lijn.
havo B Samenvatting Hoofdstuk 1
Voorkennis Wiskunde Les 7 Hoofdstuk 2/3: §2.5, 3.1 en 3.2.
Raaklijn aan een grafiek Grafiek van f’(x)
Transcript van de presentatie:

vwo A/C Samenvatting Hoofdstuk 7

Intervallen ≤  [  ● <  ‹  ○ ● ○ l l -8 3 ○ ● l l 4 4½ ● ● l l ≤  [  ● <  ‹  ○ Intervallen a -8 ≤ x < 3 [ -8 , 3 › b 4 < x ≤ 4½ ‹ 4 , 4½ ] c 5,1 ≤ x ≤ 7,3 [ 5,1 ; 7,3 ] d 3 < x ≤ π ‹ 3 , π ] ● ○ l l -8 3 ○ ● l l 4 4½ ● ● l l 5,1 7,3 ○ ● l l 3 π 7.1

Oneindige intervallen a x ≤ 4½ ● l ‹  , 4½ ] 4½ b x > -8 ○ ‹ -8 ,  › l -8 7.1

Stijgen en dalen constante stijging toenemende stijging afnemende stijging constante daling toenemende daling afnemende daling 7.1

Toenamendiagram De toenamen en afnamen van een grafiek kun je verwerken in een toenamendiagram : 1 kies een stapgrootte 2 bereken voor elke stap de toename of afname 3 teken de staafjes omhoog bij toename en omlaag bij afname 4 teken het staafje bij de rechtergrens 5 bv. toename van 3  4 teken je het staafje bij 4 7.1

. . . y . . voorbeeld . . . x 7.1

· · Gemiddelde veranderingen N N2 N2 – N1 = ∆N N1 t1 t2 t t2 – t1 = ∆t rechts ∆t · omhoog ∆N N2 N2 – N1 = ∆N dus gemiddelde verandering per tijdseenheid = ∆N : ∆t ∆N · N1 ∆t t1 t2 t t2 – t1 = ∆t 7.2

. . Het differentiequotiënt van y op het interval [xA,xB] is y B f(b) f(a) yA ∆x x a xA ∆x xB b differentiequotiënt = ∆y : ∆x = gemiddelde verandering van y op [xA,xB] = r.c. = hellingsgetal van de lijn AB ∆y yB – yA f(b) – f(a) ∆x xB – xA b - a = = 7.2

∆s ∆t Gemiddelde snelheid In een tijd-afstandgrafiek is de afgelegde s uitgezet tegen de tijd t Bij een tijd-afstandgrafiek geeft het differentiequotiënt op [a,b] de gemiddelde snelheid op [a,b] de gemiddelde snelheid is ∆s ∆t 7.2

voorbeeld ∆K K(b) – K(a) ∆P P(b) – P(a) = 12 6 6 6 4 4 -6 -5 -5 -4 -2 a gemiddelde snelheid op [-6,-4] is ∆K = 4 – 12 = -8 ∆P = -4 - -6 = 2 ∆K : ∆P = -8 : 2 = -4 gemiddelde snelheid op [-2,2] is ∆K = 6 – 6 = 0 ∆P = 2 - -2 = 4 ∆K : ∆P = 0 : 4 = 0 b differentiequotiënt op [-5,0] is ∆K = 0 – 4 = -4 ∆P = 0 - -5 = 5 ∆K : ∆P = -4/5 differentiequotiënt op [-5,2] is ∆K = 6 – 4 = 2 ∆P = 2 - -5 = 7 ∆K : ∆P = 2/7 12 6 6 6 4 4 -6 -5 -5 -4 -2 2 2 7.2

Snelheid bij een tijd-afstand grafiek bij een tijd-afstand grafiek waarvan de formule bekend is, benader je de snelheid op het moment t = a door het differentiequotiënt te berekenen op een klein interval [a , a + ∆t] met bijvoorbeeld ∆t = 0,001 7.3

. . . . . Snelheid, raaklijn en helling s 25 B2 B1 B3 20 B4 = = 3 m/s Hoe dichter Bn bij A komt te liggen ,hoe meer de lijn ABn op de lijn lijkt die de grafiek raakt. . . . Snelheid, raaklijn en helling s tijd-afstand grafiek v.b. : s = -t² + 10t Bereken de gemiddelde snelheid op [2,5],[2,4], [2,3] en [2,2½]. ∆s 25 – 16 ∆t 5 – 2 ∆s 24 – 16 ∆t 4 – 2 ∆s 21 – 16 ∆t 3 – 2 ∆s 18,75 – 16 ∆t 2,5 – 2 De lijn AB4 komt het dichtst bij de lijn die grafiek A raakt. 25 B2 B1 B3 20 B4 = = 3 m/s A 15 = = 4 m/s Bij een tijd-afstand grafiek is de snelheid op t = a gelijk aan de rc van de raaklijn van de grafiek in het bijbehorende punt. 10 k = = 5 m/s De lijn k is de raaklijn van de grafiek in A. = = 5,5 m/s 5 t 1 2 3 4 5 7.3

[ ] dydx voor x is xA y k dy dx A x O xA voor de rc. van de raaklijn in het punt A is er de notatie : [ ] y k dy dx de GR bezit een optie om dydx te berekenen x=xA A rc. van de raaklijn van de grafiek in A helling van de grafiek in A snelheid waarmee y verandert voor x = xA x O xA 7.3

7.3

[ ] Het opstellen van de formule van een raaklijn voer in y1 = x² + x – 2 stel k : y = ax + b met a = = -1 dus k : y = -x + b f(-1) = -2 dus A(-1, -2) -2 = - -1 + b -2 = 1 + b -3 = b k : y = -x - 3 [ ] dy dx x = -1 7.3

Hellinggrafieken schetsen top v.d. grafiek  helling is 0  hellinggrafiek snijdt de x-as y Hellinggrafieken schetsen top Bij een gegeven functie kun je aan elke x de helling van de grafiek in het bijbehorende punt toevoegen. stijgend dalend stijgend x O top stijgend deel v.d. grafiek positieve hellingen  hellinggrafiek boven de x-as helling dalend deel v.d. grafiek negatieve hellingen  hellinggrafiek onder de x-as pos. pos. overgang van toenemende daling naar afnemende daling is de helling maximaal  laagste punt x O laagste punt 7.3

Hellinggrafiek plotten m.b.v. GR TI  MATH – MATH - menu optie nDeriv Casio  OPTN – CALC – menu optie d/dx vb. voer in y1 = 0,1x4 – x2 + x + 8 en y2 = nDeriv(y1,x,x) (op de TI) of y2 = d/dx(y1,x) (op de Casio) 7.3

De afgeleide functie bij een functie hoort een hellingfunctie i.p.v. hellingfunctie wordt meestal de naam afgeleide functie of afgeleide gebruikt notatie : f’ (f-accent) regels voor de afgeleide : f(x) = a geeft f’(x) = 0 f(x) = ax geeft f’(x) = a f(x) = ax² geeft f’(x) = 2ax 7.4

de afgeleide van f(x) = axn g(x) = ax4 g’(x) = 4ax3 h(x) = ax5 h’(x) = 5ax4 algemeen geldt : k(x) = axn k’(x) = n · axn-1 somregel van het differentiëren f(x) = g(x) + h(x) f’(x) = g’(x) + h’(x) oude exponent ervoor zetten nieuwe exponent 1 minder (4 - 1 = 3) 7.4

Vergelijking van raaklijn met behulp van de afgeleide Je weet dat de afgeleide f’ aan elke x de helling in het bijbehorende punt van de grafiek van f toevoegt. of f’(x) is de rc van de raaklijn in het bijbehorende punt. algemeen: f’(a) is de rc van de raaklijn van de grafiek van f in het punt A(a,f(a)). y f k A x O xA yA = f(xA) rck = f’(xA) 7.4

Notaties voor de afgeleide notaties voor de afgeleide van y = f(x) zijn : f’(x) (f(x)) dy dx d dx df(x) dx 7.5

Het algebraïsch berekenen van maxima en minima y f’(x) = 0 top f’(x) < 0 f’(x) < 0 stijgend dalend dalend x O f’(x) > 0 top werkschema : het algebraïsch berekenen van maxima en minima 1 bereken de afgeleide 2 los algebraïsch op = 0 3 schets de grafiek kijk in de schets of je met een max. of een min. te maken hebt 4 bereken de extreme waarde door de gevonden x-waarde in de formule van y in te vullen dy dx dy dx 7.5