havo A Samenvatting Hoofdstuk 6

Slides:



Advertisements
Verwante presentaties
Bij een herhaald experiment, met telkens dezelfde kans op succes gebruiken we de binomiale kansverdeling Een binomiale kansverdeling wordt gekenmerkt door.
Advertisements

- Hoe noem je uitkomsten?
havo A Samenvatting Hoofdstuk 2
Gelijkmatige toename en afname
havo B Samenvatting Hoofdstuk 6
Kansbomen Veel kansexperimenten bestaan uit 2 of meer experimenten, denk maar aan: - het gooien met 3 dobbelstenen - het gooien met een dobbelsteen en.
havo A Samenvatting Hoofdstuk 9
H1 Basis Rekenvaardigheden
vwo B Samenvatting Hoofdstuk 10
havo/vwo D Samenvatting Hoofdstuk 2
RE 7 Non Life & Health Les 1.
havo A Samenvatting Hoofdstuk 7
vwo A/C Samenvatting Hoofdstuk 3
vwo B Samenvatting Hoofdstuk 3
Stijgen en dalen constante stijging toenemende stijging
vwo A/C Samenvatting Hoofdstuk 6
Herhaling kansrekenen ?!?
aantal gunstige uitkomsten aantal mogelijke uitkomsten
Eenparige versnelde beweging
Tangens In een rechthoekige driehoek kun je met tangens werken.
Regels bij kansrekeningen
aantal gunstige uitkomsten aantal mogelijke uitkomsten
havo A Samenvatting Hoofdstuk 11
havo A Samenvatting Hoofdstuk 8
vwo B Samenvatting Hoofdstuk 10
vwo B Samenvatting Hoofdstuk 1
vwo A/C Samenvatting Hoofdstuk 5
vwo A/C Samenvatting Hoofdstuk 7
vwo A Samenvatting Hoofdstuk11
vwo A Samenvatting Hoofdstuk 13
vwo B Samenvatting Hoofdstuk 7
vwo A Samenvatting Hoofdstuk 12
vwo C Samenvatting Hoofdstuk 14
vwo C Samenvatting Hoofdstuk 12
Regels bij kansrekeningen
Regels bij kansrekeningen SomregelHebben de gebeurtenissen G 1 en G 2 geen gemeenschappelijke uitkomsten, dan is P(G 1 of G 2 ) = P(G 1 ) + P(G 2 ). ComplementregelP(gebeurtenis)
Kansbomen Veel kansexperimenten bestaan uit 2 of meer experimenten, denk maar aan: - het gooien met 3 dobbelstenen - het gooien met een dobbelsteen en.
Regels bij kansrekeningen
Differentieer regels De afgeleide van een functie f is volgens de limietdefinitie: Meestal bepaal je de afgeleide niet met deze limietdefinitie, maar.
aantal gunstige uitkomsten aantal mogelijke uitkomsten
Differentieer regels De afgeleide van een functie f is volgens de limietdefinitie: Meestal bepaal je de afgeleide niet met deze limietdefinitie, maar.
Verhoudingstabel Er is een voorraad laxeermiddel. Die oplossing bevat 15% natriumsulfaat. Dit betekent: 15 gram per 100 mL oplossing. Kinderen krijgen.
Vwo C Samenvatting Hoofdstuk 15. Formules en de GR Met de GR kun je bijzonderheden van formules te weten komen. Eerst plot je de grafiek. Gebruik eventueel.
havo/vwo D Samenvatting Hoofdstuk 1
havo/vwo D Samenvatting Hoofdstuk 4
Lesplanning Binnenkomst Intro Nakijken 1.4
Statistiekbegrippen en hoe je ze berekent!!
Procenten 3 havo.
Hoofdstuk 9 havo KWADRATEN EN LETTERS
havo B Samenvatting Hoofdstuk 1
Gooien met 1 en 2 dobbelstenen
Hoofdstuk 4: Statistiek
Vergelijkingen oplossen
Experimentele kans javascript.
havo B Samenvatting Hoofdstuk 7
Kansrekening Herhaling H1 , H4 &H6
Telproblemen overzichtelijk weergeven boomdiagram wegendiagram rooster maken alle mogelijkheden systematisch uit schrijven 1.1.
Teachers Teaching with Technology™ Simulaties en klassieke kansproblemen.
Kansverdelingen Kansverdelingen Inleiding In deze presentatie gaan we kijken naar hoe kansen zijn verdeeld. We gaan in op verschillende.
Herhalen schaal Schaal is een verhouding.
Herhalen schaal Schaal is een verhouding.
Deze les Nabespreken toets
2 VWO deel Tellen en kansen Wegendiagram 1 1.
3 vmbo-KGT Samenvatting Hoofdstuk 6
3 vmbo-KGT Samenvatting Hoofdstuk 10
havo B Samenvatting Hoofdstuk 1
De distributieve eigenschap
Kommagetallen vermenigvuldigen en delen
Kansen van Briemen.
Kansrekening van Briemen.
Transcript van de presentatie:

havo A Samenvatting Hoofdstuk 6

aantal gunstige uitkomsten aantal mogelijke uitkomsten Kansdefinitie van Laplace aantal gunstige uitkomsten aantal mogelijke uitkomsten P(gebeurtenis) = je mag deze regel alleen gebruiken als alle uitkomsten even waarschijnlijk zijn bij een verkeerslicht zijn de uitkomsten rood, oranje en groen niet even waarschijnlijk, want het verkeerslicht staat langer op rood dan op oranje dus P(oranje) is niet gelijk aan ⅓ bij het gooien met een dobbelsteen is elk van de 6 uitkomsten even waarschijnlijk dus P(meer dan 4 ogen) = 2/6 = ⅓ hierbij zijn 5 en 6 ogen gunstig rond kansen af op 3 decimalen, tenzij anders wordt gevraagd 6.1

Kansschaal 6.1

Samengestelde kansexperimenten het gooien met een dobbelsteen is een voorbeeld van een kansexperiment kenmerkend voor een kansexperiment is dat de uitkomst niet van te voren vastligt voorbeelden zijn: het gooien met een dobbelsteen en een geldstuk het gooien met 2 dobbelstenen het gooien met 3 geldstukken het kopen van 3 loten in een loterij het aantal gunstige uitkomsten bij een samengesteld kansexperiment met dobbelstenen of geldstukken krijg je bij: 2 kansexperimenten met een rooster 3 of meer experimenten met systematisch noteren en/of handig tellen 6.1

Samengestelde kansexperimenten heb je met meer dan 2 experimenten te maken, dan bereken je kansen als volgt : bereken het aantal mogelijke uitkomsten tel het aantal gunstige uitkomsten door deze systematisch te noteren en/of handig te tellen deel het aantal gunstige door het aantal mogelijke uitkomsten zo krijg je bij een worp met 3 dobbelstenen en de gebeurtenis ‘som van de ogen is 15’ aantal mogelijke uitkomsten is 6 x 6 x 6 = 216 aantal gunstige uitkomsten is 10, namelijk 555 663 , 636 , 366 654 , 645 , 546 , 564 , 456 , 465 dus P(som is 15) = ≈ 0,046 1 + 3 + 6 10 = 216 216 6.1

Empirische en theoretische kansen wet van de grote aantallen door een kansexperiment heel vaak uit te voeren, komt de relatieve frequentie van een gebeurtenis steeds dichter bij de kans op die gebeurtenis te liggen 1 empirische kansen v.b. : P(meisje bij geboorte) en P(punaise met punt omhoog) empirisch betekent ‘op ervaring gegrond’ empirische kansen krijg je door een groot aantal waarnemingen te gebruiken empirische kansen bereken je door relatieve frequenties te gebruiken 2 theoretische kansen bij veel kansexperimenten kun je van te voren zeggen wat de kans op een gebeurtenis is v.b. : P(6 ogen) bij een worp van een dobbelsteen is 1/6 je gebruikt de kansdefinitie van Laplace 3 subjectieve kans hoe groot is de kans dat voor 2010 je sneller loopt dan 9 seconden over de 100m.?  onmogelijk 6.2

Simuleren door een kansexperiment voortdurend te herhalen kun je kansen schatten dat is echter een tijdrovend karwei b.v. : de kans dat bij een vliegtuig de automatische piloot uitvalt dit soort kansexperimenten gaat men simuleren (nabootsen) met de computer door vervolgens relatieve frequenties te berekenen, schat je kansen de grafische rekenmachine heeft opties om toevalsgetallen te genereren 6.2

Simuleren met de GR TI MATH-PRB-menu  randInt met randInt(1,6,10) krijg je 10 gehele toevalsgetallen van 1 t/m 6 Casio OPTN-NUM-menu  Intg en OPTN-PROB-menu  Ran# met Intg(4Ran# + 1) krijg je 1 van de getallen van 1, 2, 3 of 4 6.2

Kansbomen bij het uitvoeren van 2 of meer kansexperimenten kun je een kansboom gebruiken je gaat als volgt te werk : zet de uitkomsten bij de kansboom bereken de kansen van de uitkomsten die je nodig hebt vermenigvuldig daartoe de kansen die je tegenkomt als je de kansboom doorloopt van START naar de betreffende uitkomst 6.3

Draaiende schijven Bij het draaien van de schijven hoort de volgende kansboom 6.3

Onafhankelijke kansexperimenten we gaan er bij het draaien van de schijven vanuit dat de kansexperimenten onafhankelijk zijn dat betekent dat ze elkaar niet beïnvloeden alleen dan mag je de kansen in de kansboom vermenigvuldigen als de kansen afhankelijk zijn (elkaar beïnvloeden) mag je de kansen in de kansboom niet vermenigvuldigen afhankelijke experimenten komen in dit boek niet voor 6.3

De somregel als de gebeurtenissen geen gemeenschappelijke uitkomsten hebben dus als de gebeurtenissen elkaar uitsluiten hebben twee gebeurtenissen wel gemeenschappelijke uitkomsten, dan geldt de somregel niet zo is P(som is 4 of product is 4) niet gelijk aan P(som is 4) + P(product is 4) want de gebeurtenissen ‘som is 4’ en ‘product is 4’ hebben de uitkomst  gemeenschappelijk voor elkaar uitsluitende gebeurtenissen G1 en G2 geldt de somregel: P(G1 of G2) = P(G1) + P(G2) 6.4