Regels bij kansrekeningen

Slides:



Advertisements
Verwante presentaties
Procenten Als je deze uitleg stap voor stap volgt, kun je na afloop prima rekenen met procenten Elke keer als je klaar bent met lezen, klik je op een toets.
Advertisements

Bij een herhaald experiment, met telkens dezelfde kans op succes gebruiken we de binomiale kansverdeling Een binomiale kansverdeling wordt gekenmerkt door.
havo B Samenvatting Hoofdstuk 6
Kansbomen Veel kansexperimenten bestaan uit 2 of meer experimenten, denk maar aan: - het gooien met 3 dobbelstenen - het gooien met een dobbelsteen en.
havo A Samenvatting Hoofdstuk 10
NEDERLANDS WOORD BEELD IN & IN Klik met de muis
havo A Samenvatting Hoofdstuk 9
havo A Samenvatting Hoofdstuk 6
November 2013 Opinieonderzoek Vlaanderen – oktober 2013 Opiniepeiling Vlaanderen uitgevoerd op het iVOXpanel.
havo/vwo D Samenvatting Hoofdstuk 2
Grote getallen Getallen groter dan vier cijfers schrijf je meestal in groepjes van drie. Je schrijft niet maar Dit spreek je.
dy dx De afgeleide is de snelheid waarmee y verandert voor x = xA
Stijgen en dalen constante stijging toenemende stijging
Rekenen met snelheid Een probleem oplossen
“Verschillen” een statistiek hoofdstuk
vwo A/C Samenvatting Hoofdstuk 6
Herhaling kansrekenen ?!?
Rekenen met procenten Rekenen met procenten.
Regels bij kansrekeningen
aantal gunstige uitkomsten aantal mogelijke uitkomsten
Kb.1 Ik leer op een goede manier optellen en aftrekken
havo A Samenvatting Hoofdstuk 11
havo A Samenvatting Hoofdstuk 8
vwo A/C Samenvatting Hoofdstuk 2
vwo C Samenvatting Hoofdstuk 9
Als de som en het verschil gegeven zijn.
Elke 7 seconden een nieuw getal
vwo A Samenvatting Hoofdstuk 9
vwo A/C Samenvatting Hoofdstuk 7
vwo A Samenvatting Hoofdstuk11
vwo A Samenvatting Hoofdstuk 13
vwo A Samenvatting Hoofdstuk 15
vwo B Samenvatting Hoofdstuk 7
vwo C Samenvatting Hoofdstuk 14
vwo C Samenvatting Hoofdstuk 12
Regels voor het vermenigvuldigen
Regels bij kansrekeningen
Regels bij kansrekeningen SomregelHebben de gebeurtenissen G 1 en G 2 geen gemeenschappelijke uitkomsten, dan is P(G 1 of G 2 ) = P(G 1 ) + P(G 2 ). ComplementregelP(gebeurtenis)
Kansbomen Veel kansexperimenten bestaan uit 2 of meer experimenten, denk maar aan: - het gooien met 3 dobbelstenen - het gooien met een dobbelsteen en.
∙ ∙ f(x) = axn is een machtsfunctie O n even n oneven y y y y a > 0
Lineaire functies Lineaire functie
Regelmaat in getallen … … …
Regels bij kansrekeningen
Hypothese toetsen We hebben de volgende situatie.
De grafiek van een lineair verband is ALTIJD een rechte lijn.
Formules en de GR Met de GR kun je bijzonderheden van formules te weten komen. Eerst plot je de grafiek. Gebruik eventueel de optie ZoomFit (TI) of Auto.
De grafiek van een lineair verband is ALTIJD een rechte lijn.
Differentieer regels De afgeleide van een functie f is volgens de limietdefinitie: Meestal bepaal je de afgeleide niet met deze limietdefinitie, maar.
Differentieer regels De afgeleide van een functie f is volgens de limietdefinitie: Meestal bepaal je de afgeleide niet met deze limietdefinitie, maar.
Regelmaat in getallen (1).
1 het type x² = getal 2 ontbinden in factoren 3 de abc-formule
Oefeningen F-toetsen ANOVA.
Schatter voor covariantie
Discrete stochasten Onderwerpen Stochasten (random variables)
Continue kansverdelingen
Een fundamentele inleiding in de inductieve statistiek
Bewegen Hoofdstuk 3 Beweging Ing. J. van de Worp.
Eekhoutcentrum – oktober 2005 Johan Deprez – Hilde Eggermont
Methodologie & Statistiek I Toetsen van proporties 7.1.
Meetonzekerheden In de natuurkunde moet je vaak een grootheid meten
Statistiek voor Dataverwerking
havo/vwo D Samenvatting Hoofdstuk 4
Opgave blok 3 les 9 opg 2 opdrachtenboek.  Regel 1: Hoeveel heb ik te verdelen?  Trek de twee bekende getallen van elkaar af.  Vind je het lastig om.
Statistiekbegrippen en hoe je ze berekent!!
HISPARCWOUDSCHOTEN 2006NAHSA Tellen van Random gebeurtenissen Hoe nauwkeurig is een meting?
Kansrekening Herhaling H1 , H4 &H6
Kansverdelingen Kansverdelingen Inleiding In deze presentatie gaan we kijken naar hoe kansen zijn verdeeld. We gaan in op verschillende.
De normale verdeling Eigenschappen en vuistregels
Kansrekening van Briemen.
Transcript van de presentatie:

Regels bij kansrekeningen Somregel Hebben de gebeurtenissen G1 en G2 geen gemeenschappelijke uitkomsten, dan is P(G1 of G2) = P(G1) + P(G2). Complementregel P(gebeurtenis) = 1 – P(complementregel-gebeurtenis) Productregel Bij twee onafhankelijke kansexperimenten geldt P(G1 en G2) = P(G1) · P(G2). 13.1

Soorten kansberekeningen Gunstige uitkomsten tellen Maak een rooster of noteer systematisch de gunstige uitkomsten. Vaasmodel gebruiken Bij trekken zonder terugleggen bereken je kansen met combinaties. Productregel gebruiken Bij twee of meer onafhankelijke experimenten bereken je kansen met de productregel. Vuistregel Bij het nemen van een kleine steekproef uit een grote populatie mag je trekken zonder terugleggen opvatten als trekken met terugleggen. Je gebruikt de productregel. Binomiale verdeling De binomiale verdeling is een speciaal geval van de productregel. Bij een binomiaal kansexperiment voer je hetzelfde kansexperiment een aantal keren uit, waarbij je alleen op de gebeurtenissen ‘succes’ en ‘mislukking’ let. Hierbij is X het aantal keer succes, n het aantal keer dat het kansexperiment wordt uitgevoerd en p de kans op succes per keer. Notaties: P(X = k) = binompdf(n, p, k) P(X ≤ k) = binomcdf(n, p, k) 13.1

P(rode) = ≈ 0,326 P(4 rode) = ≈ 0,269 P(3 rode, 2 witte en 1 zwarte) = ≈ 0,210 P(3 rode, 2 witte en 1 zwarte) = ≈ 0,136 P(5 keer pakken) = ≈ 0,033 of P(5 keer pakken) = ≈ 0,033 P(7 keer pakken) = P(bij de eerste zes keer 2 rode) · P(rode) = ≈ 0,163 b c d e f

P(elk aantal ogen 4 keer) = ≈ 0,015 of P(elk aantal ogen 4 keer) = ≈ 0,015 P(zes keer 2, vier keer 3 en zes keer geen 2 en 3) = ≈ 0,025 P(bij de tiende worp evenveel als bij de derde worp) = = 0,25 b c

P(Anton pakt zwarte knikker) = P(mz) = = 0,2 b P(Anton pakt zwarte knikker) = P(mz) = = 0,2 P(Anton pakt rode knikker) = P(krI) + P(mrII) = ≈ 0,586 P(Anton pakt twee keer wit) = P(kwkw) = ≈ 0,036 P(Anton pakt twee keer rood) = P(krIkrI) + P(krImrII) + P(mrIIkrI) + P(mrIImrII) = ≈ 0,318 c d e 13.2

P(Nederlander heeft spierpijnklachten) = P(ps) + P(ps) - b P(Nederlander heeft spierpijnklachten) = P(ps) + P(ps) = 0,01 · 0,7 + 0,99 · 0,2 = 0,205 Aantal = 10 000 · 0,01 · 0,7 = 70 Aantal = 10 000 · 0,205 = 2050 Er zijn 2050 personen die spierpijnlachten hebben, waarvan er 70 Parkinson hebben. P(een persoon met spierpijnklachten heeft Parkinson) = ≈ 0,034 Van de personen die spierpijnklachten hebben, heeft maar een klein deel de ziekte van Parkinson, zie vraag e. c d e f 13.2

a X = het aantal drukfouten dat op die bladzijde staat. X is binomiaal verdeeld met n = 48 en p = P(X ≥ 2) = 1 – P(X ≤ 1) = 1 – binomcdf(48, , 1) ≈ 0,013 P(X = 2) = binompdf(48, , 2) ≈ 0,012 Je verwacht 0,012 · 280 ≈ 3 bladzijden met twee drukfouten. b

Oppervlakte berekenen opp = normalcdf(a, b, µ, σ) Neem a = –1099 als er geen linkergrens is. Grens berekenen a = invNorm(opp links, µ, σ) 13.3

Normale verdeling Werkschema: aanpak bij opgaven over de normale verdeling Schets een normaalkromme en verwerk hierin µ, σ, l, r en opp. Kleur het gebied dat bij de vraag hoort. Bereken met de GR het ontbrekende getal. Beantwoord de gestelde vraag. 13.3

opgave 26 a opp = normalcdf(1000, 1099, 1005, 6) ≈ 0,798 Dus 79,8%. b opp = 2 · normalcdf(–1099, 1001, 1005, 6) ≈ 0,505 Dus van 50,5%.

opgave 26 c TI normalcdf(–1099, 1000, µ, 8) = 0,02 Voer in y1 = normalcdf(–1099, 1000, x, 8) en y2 = 0,02 De optie intersect geeft x ≈ 1016,4. Dus instellen op een gemiddelde van minstens 1016,4 gram. Casio y1 = P((1000 – x) : 8) en y2 = 0,02.

Van de meisjes in Vwo 6 is bekend dat ze gemiddeld 58 kilo wegen en de jongens wegen gemiddeld 64. De jongens hebben een standaardafwijking van 8 kilo en de meisjes van 6 kilo. De Vwo 6 klassen hebben een sok uur en moeten naar de sportvelden fietsen. Een van de meisjes komt altijd met de bus naar school. Haar klasgenoot is genegen om haar mee te nemen achterop zijn fiets. De fiets van deze jonge man kan maximaal 140 kilo dragen. Hoe groot is de kans dat de fiets de sportvelden niet haalt op grond van een gewichtsoverbelasting? Hoe groot is deze kans als de jongen een gemiddeld gewicht heeft?

Som en verschil van toevalsvariabelen De som en het verschil van de normaal verdeelde toevalsvariabelen X en Y zijn weer normaal verdeeld. De verwachtingswaarde en de standaardafwijking van S = X + Y en V = X – Y bereken je met µS = µX + µY en respectievelijk µV = µX – µY en De formules voor σS en σV mag je alleen gebruiken als X en Y onafhankelijk zijn. Voor de som S = X1 + X2 + X3 + … + Xn van n onafhankelijke toevalsvariabelen X1, X2, …, Xn geldt en 13.3

opgave 34 De totale afhandelingstijd is T = X + Y. T is normaal verdeeld met µT = µX + µY = 170 + 110 = 280 seconden en 5 minuten = 300 seconden opp = normalcdf(300, 1099, 280, ) ≈ 0,083 Dus in 8,3% van de gevallen. seconden

opgave 41 De totale tijdsduur is T = X1 + X2 + X3 + X4. T is normaal verdeeld met µT = 12 + 8 + 20 + 18 = 58 seconden en opp = normalcdf(60, 1099, 58, ) ≈ 0,144 Dus in 14,4% van de gevallen. seconden

Van de meisjes in Vwo 6 is bekend dat ze gemiddeld 58 kilo wegen en de jongens wegen gemiddeld 64. De jongens en meisjes hebben een standaardafwijking van 7 kilo. De Vwo 6 klassen hebben een sok uur en moeten naar de sportvelden fietsen. Een meisjes tweeling komt altijd met de bus naar school. Hun klasgenoten,ook een tweeling is genegen om haar mee te nemen op hun tandem. De Tandem van de jonge mannen kan maximaal 250 kilo dragen. Hoe groot is de kans dat de fiets de sportvelden niet haalt op grond van een gewichtsoverbelasting?

Steekproef van lengte n Gegeven is een populatie met een normaal verdeelde toevalsvariabele X. Bij een steekproef van lengte n uit deze populatie is Xsom = X + X + X + … + X (in termen) normaal verdeeld met en 13.4

opgave 44 Xsom is normaal verdeeld met = 3 · 40 = 120 minuten en minuten. P(Xsom > 135) = normalcdf(135, 1099, 120, ) ≈ 0,140

Het steekproefgemiddelde - wet: Bij een normaal verdeelde toevalsvariabele X met gemiddelde µX en standaardafwijking σX is bij steekproeflengte n het steekproefgemiddelde normaal verdeeld met en Bij een grote steekproef, bijvoorbeeld een steekproef met n > 1000, zal de spreiding heel klein worden. Het steekproefgemiddelde zal dan heel dicht bij het theoretische gemiddelde µX liggen. Je krijgt dus een goede schatting van µX door te berekenen voor grote waarden van n. 13.4

opgave 49 a P(X < 25 ⋁ X > 35) = 2 · P(X < 25) = 2 · normalcdf(–1099, 25, 30, 4) ≈ 0,211

opgave 49 b is normaal verdeeld met en = 2 · normalcdf(–1099, 25, 30, ) ≈ 0,000 000 02 ≈ 0,000

opgave 49 c opp links van 30 – a is = 0,025 30 – a = invNorm(0.025, 30, ) 30 – a ≈ 28,25 a ≈ 1,75

opgave 49 d opp links van 29 is 0,0005 is normaal verdeeld met en TI normalcdf(–1099, 29, 30, ) = 0,0005 Voer in y1 = normalcdf(–1099, 29, 30, ) en y2 = 0,0005. De optie intersect geeft x ≈ 173,2. Dus n > 173. Casio Voer in y1 = P((29 – 30) : (4 : )) en y2 = 0,0005.

Discrete en continu verdelingen Bij een continu toevalsvariabele kan elke waarde tussen twee uitkomsten aangenomen worden. Bij een discrete toevalsvariabele worden alleen een aantal ‘losse’ waarden aangenomen. Bij het overstappen van een discrete toevalsvariabele X op een continu toevalsvariabele Y moet je een continuïteitscorrectie van 0,5 toepassen: P(X ≤ k) = P(Y ≤ k + 0,5). 13.5

opgave 59 a P(X < 20) = P(X ≤ 19) = P(Y ≤ 19,5) = normalcdf(–1099 , 19.5, 28.2, 4.3) ≈ 0,022 Dus in 2,2%. P(X = 30) = P(29,5 ≤ Y ≤ 30,5) = normalcdf(29.5, 30.5, 28.2, 4.2) ≈ 0,085 P(X > 25) = 1 – P(X ≤ 25) = 1 – P(Y ≤ 25.5) = 1 – normalcdf(–1099, 25.5, 28.2, 4.3) ≈ 0,735 b c

Van binomiale verdeling naar normale verdeling verwachtingswaarde standaardafwijking Voor grote n mag je de binomiale verdeling benaderen door een normale verdeling. De binomiaal verdeelde toevalsvariabele X kan voor grote n benaderd worden door de normaal verdeelde toevalsvariabele Y met µY = np en Voorwaarde is dat np > 5 en n(1 – p) > 5. 13.5

opgave 61 a P(X ≤ 100) = binomcdf(300, 0.37, 100) ≈ 0,104 Y is normaal verdeeld met µY = µX = np = 300 · 0,37 = 111 en P(X ≤ 100) = P(Y ≤ 100,5) = normalcdf(–1099, 100.5, 111, ) ≈ 0,105 b

opgave 62 a X = het aantal personen dat komt opdagen. P(X ≤ 1300) = binomcdf(1430, 0.9, 1300) ≈ 0,884 De gevraagde kans is 0,844. Stel hij noteert maximaal n reserveringen. Voor welke n is P(X ≤ 1300) > 0,99 ? TI binomcdf(n, 0.9, 1300) > 0,99 Voer in y1 = binomcdf(x, 0.9, 1300). Maak een tabel en lees af voor n = 1416 is y1 ≈ 0,9911 voor n = 1417 is y1 ≈ 0,9888. Dus hij noteert maximaal 1416 reserveringen. Casio Benader X door de normaal verdeelde toevalsvariabele Y met µY = µX = np = 0,9n en P(X ≤ 1300) = P(Y ≤ 1300,5), dus Voer in y1 = P((1300,5 – 0,9x) : ) en y2 = 0,99 De optie intersect geeft x ≈ 1415,8. b = 0,99

opgave 64 E(X) = 1440, dus np = 1440 σX = 30, dus 1440(1 – p) = 30 1440 – 1440p = 900 –1440p = –540 p = 0,375 np = 1440 0,375n = 1440 n = 3840