havo B Samenvatting Hoofdstuk 6

Slides:



Advertisements
Verwante presentaties
vwo B Samenvatting Hoofdstuk 10
Advertisements

havo A Samenvatting Hoofdstuk 7
dy dx De afgeleide is de snelheid waarmee y verandert voor x = xA
vwo B Samenvatting Hoofdstuk 3
Stijgen en dalen constante stijging toenemende stijging
havo B Samenvatting Hoofdstuk 12
havo A Samenvatting Hoofdstuk 8
vwo A/C Samenvatting Hoofdstuk 2
vwo D Samenvatting Hoofdstuk 9
vwo C Samenvatting Hoofdstuk 13
vwo C Samenvatting Hoofdstuk 11
vwo B Samenvatting Hoofdstuk 9
vwo B Samenvatting Hoofdstuk 10
horizontale lijn a = 0  y = getal
vwo B Samenvatting Hoofdstuk 2
vwo B Samenvatting Hoofdstuk 1
vwo A/C Samenvatting Hoofdstuk 5
vwo A/C Samenvatting Hoofdstuk 7
vwo A Samenvatting Hoofdstuk10
vwo B Samenvatting Hoofdstuk 7
vwo A Samenvatting Hoofdstuk 12
vwo C Samenvatting Hoofdstuk 14
vwo B Samenvatting Hoofdstuk 15
vwo A Samenvatting Hoofdstuk 16
vwo A Samenvatting Hoofdstuk 14
vwo B Samenvatting Hoofdstuk 13
Riemannsommen De oppervlakte van het vlakdeel V in figuur a is
De grafiek van een lineair verband is ALTIJD een rechte lijn.
De grafiek van een machtsfunctie
Optimaliseren van oppervlakten en lengten
∙ ∙ f(x) = axn is een machtsfunctie O n even n oneven y y y y a > 0
De grafiek van een lineaire formule is ALTIJD een rechte lijn. algemene vergelijking : y = ax + b a =hellingsgetal of richtingscoëfficient altijd 1 naar.
Machten en logaritmen Een stukje geschiedenis
Lineaire functies Lineaire functie
De grafiek van een lineair verband is ALTIJD een rechte lijn.
Formules en de GR Met de GR kun je bijzonderheden van formules te weten komen. Eerst plot je de grafiek. Gebruik eventueel de optie ZoomFit (TI) of Auto.
Differentieer regels De afgeleide van een functie f is volgens de limietdefinitie: Meestal bepaal je de afgeleide niet met deze limietdefinitie, maar.
Interval a-8 ≤ x < 3 [ -8, 3 › b4 < x ≤ 4½ ‹ 4, 4½ ] c5,1 ≤ x ≤ 7,3 [ 5,1 ; 7,3 ] d3 < x ≤ π ‹ 3, π ] -83 l l ○● 44½4½ l l ○● 5,17,3 l l ● 3π l l ○● ≤
De grafiek van een lineair verband is ALTIJD een rechte lijn.
Differentieer regels De afgeleide van een functie f is volgens de limietdefinitie: Meestal bepaal je de afgeleide niet met deze limietdefinitie, maar.
Intervallen a-8 ≤ x < 3 [ -8, 3 › b4 < x ≤ 4½ ‹ 4, 4½ ] c5,1 ≤ x ≤ 7,3 [ 5,1 ; 7,3 ] d3 < x ≤ π ‹ 3, π ] -83 l l ○● 44½4½ l l ○● 5,17,3 l l ● 3π l l ○●
Asymptoot is een lijn waar de grafiek op den duur mee samenvalt.
Lineaire vergelijkingen
Differentieer regels De afgeleide van een functie f is volgens de limietdefinitie: Meestal bepaal je de afgeleide niet met deze limietdefinitie, maar.
Buigpunt en buigraaklijn
1 het type x² = getal 2 ontbinden in factoren 3 de abc-formule
havo A Samenvatting Hoofdstuk 5
havo B Samenvatting Hoofdstuk 5
ribwis1 Toegepaste wiskunde – Differentieren Lesweek 7
ribWBK11t Toegepaste wiskunde Lesweek 02
Havo B Samenvatting Hoofdstuk 4. Interval a-8 ≤ x < 3 [ -8, 3 › b4 < x ≤ 4½ ‹ 4, 4½ ] c5,1 ≤ x ≤ 7,3 [ 5,1 ; 7,3 ] d3 < x ≤ π ‹ 3, π ] -83 l l ○● 44½4½.
havo D deel 3 Samenvatting Hoofdstuk 12
havo A Samenvatting Hoofdstuk 3
havo B Samenvatting Hoofdstuk 9
vwo D Samenvatting Hoofdstuk 12
havo D deel 3 Samenvatting Hoofdstuk 10
Vwo C Samenvatting Hoofdstuk 15. Formules en de GR Met de GR kun je bijzonderheden van formules te weten komen. Eerst plot je de grafiek. Gebruik eventueel.
havo/vwo D Samenvatting Hoofdstuk 4
havo B 5.1 Stelsels vergelijkingen
H4 Differentiëren.
havo B Samenvatting Hoofdstuk 1
Differentieer regels De afgeleide van een functie f is volgens de limietdefinitie: Meestal bepaal je de afgeleide niet met deze limietdefinitie, maar.
havo B Samenvatting Hoofdstuk 3
Werken met de TI-84 Lianne Dirven: “Leer je net als auto rijden alleen maar door het (veel) te doen!”
Vwo6 WiskA Toepassing van differentiaalrekenen Extra opgaven.
Hoofdstuk 3 Lineaire formules en vergelijkingen
3 vmbo-KGT Samenvatting Hoofdstuk 6
De grafiek van een lineair verband is ALTIJD een rechte lijn.
havo B Samenvatting Hoofdstuk 1
havo B Samenvatting Hoofdstuk 3
Transcript van de presentatie:

havo B Samenvatting Hoofdstuk 6

top v.d. grafiek  helling is 0  hellinggrafiek snijdt de x-as Hellinggrafieken schetsen y top v.d. grafiek  helling is 0  hellinggrafiek snijdt de x-as Bij een gegeven functie kun je aan elke x de helling van de grafiek in het bijbehorende punt toevoegen. top stijgend dalend stijgend x O top stijgend deel v.d. grafiek positieve hellingen  hellinggrafiek boven de x-as dalend deel v.d. grafiek negatieve hellingen  hellinggrafiek onder de x-as helling pos. overgang van toenemende daling naar afnemende daling is de helling maximaal  laagste punt pos. x O laagste punt 6.1

y top top x O top top opgave 4 a x < -3 hellinggrafiek onder de x-as de grafiek is dalend op 〈  , -3 〉 b f heeft een top bij x = -3 omdat de hellinggrafiek daar de x-as snijdt dat is het laagste punt c f is stijgend op 〈 -3 , 0 〉 d hoogste punt e schets y top top x O top top 6.1

Hellinggrafiek plotten m.b.v. GR TI  MATH – MATH - menu optie nDeriv Casio  OPTN – CALC – menu optie d/dx vb. voer in y1 = 0,1x4 – x2 + x + 8 en y2 = nDeriv(y1,x,x) (op de TI) of y2 = d/dx(y1,x) (op de Casio) 6.1

De afgeleide functie Bij een functie hoort een hellingfunctie. i.p.v. hellingfunctie wordt meestal de naam afgeleide functie of afgeleide gebruikt. notatie : f’ (f-accent) regels voor de afgeleide : f(x) = a geeft f’(x) = 0 f(x) = ax geeft f’(x) = a f(x) = ax² geeft f’(x) = 2ax 6.2

opgave 14a f(x) = (2x – 7)(8 + x) f(x) = 16x + 2x² - 56 – 7x eerst haakjes wegwerken f(x) = (2x – 7)(8 + x) f(x) = 16x + 2x² - 56 – 7x f(x) = 2x² + 9x – 56 f’(x) = 2 · 2x + 9 f’(x) = 4x + 9 dezelfde termen optellen somregel van differentiëren 6.2

Vergelijking van raaklijn met behulp van de afgeleide Je weet dat de afgeleide f’ aan elke x de helling in het bijbehorende punt van de grafiek van f toevoegt of f’(x) is de rc van de raaklijn in het bijbehorende punt. algemeen: f’(a) is de rc van de raaklijn van de grafiek van f in het punt A(a, f(a)) y f k A x O xA yA = f(xA) rck = f’(xA) 6.3

opgave 20 a f(x) = 0,5x3 – 2x2 + 2 f’(x) = 3 · 0,5x2 – 2 · 2x stel k : y = ax + b xA = 4 a = f’(4) = 1,5 · 42 – 4 · 4 = 8 dit geeft k : y = 8x + b y = f(4) = 0,5 · 43 – 2 · 42 + 2 = 2 dus k : y = 8x - 30 2 = 8 · 4 + b 2 = 32 + b b = -30 6.3

Raaklijn met gegeven richtingscoëfficient Teken f(x) = x² - 3x + 1 Teken enkele lijnen met rc = 2 Eén van de lijnen raakt de grafiek het raakpunt is B. Bereken de coördinaten van B rc = 2 dus f’(xB) = 2 xB berekenen f’(x) = 2 oplossen f’(x) = 2x – 3 f’(x) = 2 xB = 2,5 yB = f(2,5) = -0,25 B(2,5; -0,25) y 4 3 2 2x – 3 = 2 2x = 5 x = 2,5 1 x -1 1 2 ● 3 4 B -1 6.3

y 4 3 2 f 1 A ● x -1 1 2 3 4 -1 k opgave 25 f(x) = -x² + 2x + 3 a rcraaklijn = 4 dus f’(x) = 4 f’(x) = -2x + 2 xA = -1 yA = f(-1) = 0 A(-1, 0) b k : y = -6x + 8 rcraaklijn = -6 dus f’(xB) = -6 xB = 4 yB = f(4) = -5 B(4, -5) y 4 -2x + 2 = 4 -2x = 2 x = -1 3 2 f 1 -2x + 2 = -6 -2x = -8 x = 4 A ● x -1 1 2 3 4 -1 k 6.3

raaklijn in een top is horizontaal  afgeleide is 0 Extreme waarden berekenen met behulp van de afgeleide werkschema: het algebraïsch berekenen van extreme waarden 1 Bereken f’(x) 2 Los algebraïsch op f’(x) = 0 3 Voer de formule van f in op de GR. Plot en schets de grafiek. Kijk in de grafiek of je met max. en/of min. te maken hebt. 4 Bereken de y-coördinaten van de toppen en noteer het antwoord in de vorm max. is f(…) = … en min. is f(…) = … raaklijn in een top is horizontaal  afgeleide is 0 6.3

In de praktijk gaat het bij problemen vaak om het vinden van een maximum of minimum Voorbeelden van optimaliseringsproblemen zijn: Bij welke afmetingen is de oppervlakte bij een gegeven omtrek het grootst ? Wat zijn de afmetingen van de doos met de grootste inhoud die je uit een gegeven rechthoekig stuk karton kunt maken ? Bij welke route horen de laagste kosten ? 6.4

O 200 x O 10 opgave 35 a stel AD = x CD + 2x = 40 CD = 40 – 2x O = AD · CD O = x(40 – 2x) O = 40x – 2x² b = 40 – 4x = 0 40 – 4x = 0 -4x = -40 x = 10 AD = 10 m. CD = 40 – 20 = 20 m. dO dx O 200 dO dx x O 10 6.4