De presentatie wordt gedownload. Even geduld aub

De presentatie wordt gedownload. Even geduld aub

Speciaal – Atoomfysica Aspecten AMO-werkgemeenschapscommissie

Verwante presentaties

Presentatie over: "Speciaal – Atoomfysica Aspecten AMO-werkgemeenschapscommissie"— Transcript van de presentatie:

1 Speciaal – Atoomfysica Aspecten AMO-werkgemeenschapscommissie
Stand van Zaken TRImP FOM programma 48 Speciaal – Atoomfysica Aspecten AMO-werkgemeenschapscommissie 6 october 2004 Klaus Jungmann, KVI

2 TRImP Trapped Radioactive Isotopes: microlaboratories for Fundamental Physics
Theory Nuclear Physics Experiment Atomic people (scientists): G. P. Berg, U. Dammalapati, S. De, P. Dendooven, O. Dermois, M.N. Harakeh, R. Hoekstra, K. Jungmann, R. Morgenstern, C.J.G. Onderwater, A. Rogachevskiy, M. Sanchez, O.Scholten, M. Sohani, R. Timmermans, E. Traykov, O. Versolato, L. Willmann, H.W. Wilschut + many more funding: project project  program  (4 years setup phase)

3 Motivatie - Waar gaat het over ?

4 Physics outside Standard Model Searches for New Physics
Fundamental Interactions – Standard Model Strong Gravitation ? Magnetism Electricity Maxwell Glashow, Salam, t'Hooft, Veltman,Weinberg Weak Electro - Standard Model Grant Grand Unification not yet known? Physics within the Standard Model Physics outside Standard Model Searches for New Physics

5 & Precision Measurement
TRImP Possibilities to Test New Models Low Energies & Precision Measurement High Energies & direct observations

6 Some Questions related to TRImP Physics
Origin of Parity Violation in Weak Interactions  details of b-decays Na, Ne isotopes (nature prefers lefthandedness) Dominance of Matter over Antimatter in Universe ? CP - Violation, Time Reversal Symmetry, Parity Violation  permanent electric dipole moments ? Ra isotopes

7 Waar kan men dat binnen TRImP
Atoomfysica - Waar kan men dat binnen TRImP vinden ? Bijna overal !


9 De wereld volgens Escher
H.W. Wilschut De wereld volgens Escher P C T materie antimaterie spiegelbeeld terug naar af af tiid   tijd meet schending tijdsomkering niet CERN maar met normale materie b.v. elektrisch dipoolmoment e e-

10 Concept op het KVI

11 TRImP Vanaf het begin: Atoomfysica in bijna elke onderdeel
Particle Physics Nuclear Physics Atomic Physics Elk subsysteem moet met hoge effizientie en betrouwbaarheid werken

12 Realizatie van het Concept

13 Combined Fragment and Recoil Separator
TRImP Combined Fragment and Recoil Separator Ion catcher (gas-cell or thermal ioniser) Low energy beam line MOT D Q Magnetic separator Production target Wedge AGOR cyclotron RFQ cooler/buncher MOT

14 De Separator werkt sinds zomer 2004

15 Separator commissioning
TRIP Separator commissioning Detector 1 21Na 20Ne 21Na 20Ne Dispersive plane DD QD QD DD QD QD T1 Achromatic focus Detector 2 B = p/q  v A/Z TOF  A/Z E  A2 AGOR beam Traps Yield of 21Na at the focal plane: Experiment observation: MHz/kW

16 Hoe remmen wij de ionen af ?
Botsingen in gas ? Vaste stoffen ? Verzamelen op een folie ? Testopstellingen nodig

17 ION-CATCHER EU-RTD Meeting Leuven 2003:
Bottom line: NOT ionization potentials of collision partners BUT s01 / (s01 + s10) are important  Use W/Re Thermal Ionizer for alkali and alkali earth: > 90% efficiency

18 RFQ Novel Technology

19 TRImP RFQ Cooler

20 RFQ prototype test TRIP Tests: RFQ in vacuum Transverse cooling
Velocity damping With and without a drag voltage on the segments Trap position Buffer gas pressure (He): ~10-1 mbar ~10-3 mbar 330 mm 10eV RFQ ion cooler thermal RFQ ion buncher Switching on end electrodes TRIP

21 Optimization using the simulations
Main goal: collect all ions Confinement and transmission Optimize parameters (regions of stable operation): pressure and type of gas aperture diameters beam settings at entrance drag voltage step potentials on separation electrodes accumulation time (buncher) trap potential depth and shape Questions: phase dependence (cooler-buncher) phase dependence (switching) where do we loose ions (why?) Buffer gas pressure RF: 1500 kHz, 21Na+, 10 eV 950 m/s maximum transverse velocity 0.5 V drag voltage step Gas pressure  drag voltage ~ 2 eV q=0.5 p=0.025 mbar drag voltage=0.5V Trapped Radioactive Isotopes: micro-laboratories for Fundamental Physics

22 Een nieuw laser laboratorium voor nauwkeurige meetingen ontstaat

23 Laser Hardware & Electronics
TRImP Laser Hardware & Electronics New laser equipment arrives Ti:sapphire laser Dye laser Semiconductor laser Diagnostic equipment Technical personnel

24 Waar Staan Wij in de Fysica? Twee Hoofdactiviteiten (KVI groep):
b-verval edm’s (Radium, Deuteron) Buitengebruikers: 21Na - verval (Naviliat, Caen; begin October 2004) 19Ne - verval (Young, North Carolina; werkt al mee) Belangstelling aangegeven: Pariteitsschending in Cs isotopen (Bouchiat) Pariteitsschending in enkele ionen (Fortson) (zitten wachten op faciliteit en menskracht)

25 b-verval Correlaties begin: Na later: 20Na, 19Ne

26 New Interactions in Nuclear and Muon b-Decay
In Standard Model: Weak Interaction is V-A Vector [Tensor] b+ ne Scalar [Axial vector] b+ ne Scielzo,Freedman, Fujikawa, Vetter PRL 93, (3 Sep 2004) 21 Na : a exp = (91) a theor = 0.558(6)  branching ratio measurement needed In general b-decay could be also S , P, T nuclear b-decays, Experiments in Traps

27 The role of (optical) trapping
Optical trap sample isotope selective, spin manipulation point source, no substrate recoil (ion) mass spectrometry From KVI atomic physics: He2+ + Na S. Knoop 1 a.u.=15 AeV Ideal environment for precision experiments

28 Electrische Dipool Momenten
Permanente Electrische Dipool Momenten Spektrokopie van Ba,Ra Haalbaarheidsexperimenten Deuteron EDM EDM experimenten

29 Origin of EDMs from C.P. Liu

30 Origin of EDMs from C.P. Liu

31 TRImP Radium Permanent Electric Dipole Moment Benefits of Radium
near degeneracy of 3P1 and 3D2  ~ enhancement some nuclei strongly deformed spin > 1/2  nuclear enhancement 50~1000 (isotope dependent) 6 Ra also interesting for weak interaction effects Anapole moment, weak charge (Dzuba el al., PRA 6, )

32 Radium Spectroscopy Data
Radium Discharge analyzed with grating spectrometer Ebbe Rasmussen, Z. Phys, 87, 607 , 1934; Z. Phys, 86, 24, 1933. Resolution ~ 0.05 A, 99 lines, absolute accuracy [A] 1S0-1P1 1S0-3P1 Corrections in deduces energy levels H.N. Russel, Phys. Rev. 46, 989 (1934) [A] Similar to Barium  identification as alkaline earth element

33 Trappist’s View Repumping necessary Repumping Cooling Transition
7s 7p 1P1 7s 7p 3P 7s 6d 1D2 7s 6d 3D 1 2 3 1*105 s-1 3*105 1.6*106 s-1 4*103 s-1 Weaker line, second stage cooling Repumping 1.4*10-1 s-1 Preliminary Transition Rates as calculated by K. Pachucky (also by V. Dzuba et al.)

34 Trappist’s View 3*104 s-1 2.2*108 s-1 7s2 1S0 7s 7p 1P1 7s 7p 3P 7s 6d 1D2 7s 6d 3D 1 2 3 1*105 s-1 3*105 1.6*106 s-1 4*103 s-1 Preliminary Transition Rates as calculated by K. Pachucky (also by V. Dzuba et al.)

35 Trappist’s View Consequences for Laser Cooling with 1S0-3P1
Energy levels calculation 3D-States are lower J. Biron & K. Pachucky (priv. Comm.) 7s 6d 3D 1 2 3 2.2*108 s-1 7s2 1S0 7s 7p 1P1 7s 7p 3P 7s 6d 1D2 2 1 1.6*106 s-1 7s 6d 3D 1 2 3 Consequences for Laser Cooling with 1S0-3P1 Smaller Enhancement of EDM Longer Lifetime of 3D2 in E-Field

36 Barium Intercombination line 1S0–3P1
553.7 nm 791.3 nm 6s2 1S0 6s 6p 1P1 6s 6p 3P 1 6s 5d 3D  3 m 1.4 µsec 8.4 nsec 40% 60% 3 2 1 Creation of intense beam of meta-stable D-state atoms

37 FM Saturated absorption spectroscopy of I2
(almost one line/5GHz from nm) Diode Laser 791.3 nm I2 Oven (560ºC) M1 M3 BS PD Lock-In Amp Feedback Control VCO /4 AOM w=90.5kHz f=f0+f1 Sin(wt) Reference Line P(52)(0-15) transition To Beat note 599 MHz away from 1S0–3P1 in 138Ba Lock point

38 1S0–3P1 transition in an External Magnetic field
 = gJ µ mJ B IS = 138Ba–136Ba= (3) MHz 2.3 MHz (FWHM) Decay rates Branching into 3D States Barium to test atomic theory

39 Competitors

40 Some EDM Experiments compared
New 2004 from muon g-2: d (muon) < 2.8 10-19 1.610-27 Start TRIP 199Hg Radium potential de (SM) < 10-37 molecules: after E.Hinds

41 Wat wij in richting toepassingen doen
Spin Offs Wat wij in richting toepassingen doen

42 TRImP The ALCATRAZ Experiment a precursor for TRImP (R. Hoekstra, R. Morgenstern et al.) 41Ca

43 Stand van Zaken Atoomfysica is een sterke poot van TRImP
TRImP is (nog) in opbouw fase Al eerste experimenten (meer technisch) met impact 21Na b-verval branching ratio eerste serieuse meeting in voorbereiding KVI groep gefocusseerd op b-verval en edm’s, waar goede kansen voor impact bestaan zorgvuldige, maar efficiente aanpak Samenwerkingsverbanden met gerenomeerde atoomfysici zijn ontstaan; verdere mogelijkheden zitten wachten

44 Key Experiments TRImP TRImP will be a user facility
 open to outside users KVI will concentrate first on  electroweak tests * b- decay (20,21Na, 19Ne) * electric dipole moments (Ra)  applications * ALCATRAZ (rare Ca isotope detection) (R. Hoekstra, R. Morgenstern) Networks jointly address  technology and science issues * NIPNET, KVI coordinator (H.W. Wilschut) ION Catcher VIDI grants for spectroscopy on Radium (L. Willmann) for Deuteron (edm) polarimeter (G. Onderwater) Conference invited talks (on TRImP related subjects) 2000: : : : : : 3

45 Bedankt voor uw aandacht !

Download ppt "Speciaal – Atoomfysica Aspecten AMO-werkgemeenschapscommissie"

Verwante presentaties

Ads door Google