De presentatie wordt gedownload. Even geduld aub

De presentatie wordt gedownload. Even geduld aub

Euler of Excel? Hoe computers en rekenmachines de getaltheorie beïnvloeden door Gunther Cornelissen van de Universiteit Utrecht.

Verwante presentaties


Presentatie over: "Euler of Excel? Hoe computers en rekenmachines de getaltheorie beïnvloeden door Gunther Cornelissen van de Universiteit Utrecht."— Transcript van de presentatie:

1 Euler of Excel? Hoe computers en rekenmachines de getaltheorie beïnvloeden door Gunther Cornelissen van de Universiteit Utrecht

2 Rekenen door de eeuwen… • hoofdrekenen… (algoritmen) • met rekenhulpmiddelen… (abacus, rekenliniaal) • met tabellen; met logaritmen… • met mechanische rekenmachines… (Pascal; Leibniz; Babbage) • met electronische rekenmachines… • met supercomputers… • met pc’s… (symbolisch, bewijsverificatie)

3 Op school kan het ondertussen met gratis software op pc’s.

4 Computers en getaltheorie beroemde voorbeelden

5 Computers en getaltheorie 18593Riemann Titchmarsh Turing D.H. Lehmer van de Lune, te Riele & Winter rond Odlyzko Gourdon miljoen rond Hiary Testen van vermoeden,bijv. Riemann hypothese Prijzengeld 1M$ Hoe ver moet je gaan om het te geloven?

6 Riemannhypothese in de klas? • Jan van de Craats en Roland van der Veen, De Riemannhypothese - een miljoenenprobleem, Epsilon Uitgeverij • GC + Sjoerd Andringa, “Werken met wiskunde”, Junior College Utrecht, vwo5 • Bewijzen dat er oneindig veel priemgetallen zijn met de productformule van Euler • Priemtelfunctie berekenen en schatten • Elementaire herformuleringen van de Riemannhypothese, bijv. criterium van Lagarias dat de som van de delers van n kleiner of gelijk is aan met voor alle natuurlijke getallen n.

7 Opstellen van vermoeden,bijv. Birch en Swinnerton-Dyer vermoeden • 1960 berekende Peter Swinnerton-Dyer het aantal oplossingen N p van y 2 =x 3 +ax+b modulo priemgetallen p≤x en plotte ∏ N p /p. • (zwak) Birch en Swinnerton-Dyer vermoeden: • r is de rang van de vergelijking; “r=0” betekent dat er maar eindig veel oplossingen zijn in rationale getallen. • Prijzengeld 1M$ Computers en getaltheorie Plot: ln(∏ p≤x N p /p) vs ln(ln(x)) voor y 2 =x 3 -5x EDSA C

8 • 1993 stelde bankier Andy Beal volgende vermoeden op: Als A,B,C natuurlijke getallen zijn, en x,y,z natuurlijke getallen, allemaal >2, dan geldt voor iedere oplossing van A x +B y =C z dat A, B en C een gemeenschappelijke deler hebben. • Hij checkte het eerst voor alle variabelen <100 op 15 computers. • Prijzengeld is nu 1M$. Computers en getaltheorie Testen van vermoeden,bijv. vermoeden van Beal

9 Rekenen en getaltheorie Een voorbeeld in detail: de priemgetalstelling

10 Een beroemd resultaat, “ontdekt” door berekening: De Priemgetalstelling Stelling Als het aantal priemgetallen is kleiner dan dan is Hoe werd zoiets ontdekt? Zouden leerlingen het zelf kunnen ontdekken? Hadamard en de la Vallée-Poussin (1896)

11 Bronnen • Anton Felkel (1771): Tafel aller Einfachen Factoren der durch 2, 3, 5 nicht theilbaren Zahlen von 1 bis ; 1. Theil Enthaltend die Factoren von 1 bis • Jurij Vega (1794): Thesaurus Logarithmorum Completus

12 Formulering • Adrien-Marie Legendre Essai sur la Théorie des Nombres ( p. 19; 2nd ed. 1808) • Carl-Friedrich Gauß Tafel der Frequenz der Primzahlen (1792?), Nachlass, Werke II, Brief aan Encke (1849)

13 Conclusie Heel veel getaltheoretische ontdekkingen baseren op (grootschalig) rekenen… Yerkes Observatory, 1921

14 Oppassen geblazen… Wat er mis kan gaan door “enkel” rekenen

15 De Stelling van Littlewood • Berekeningen suggereren dat Kotnik (2008) bewees dit voor • Littlewood bewees in 1914 dat oneindig vaak • Skewes bewees in 1955 dat dit gebeurt voor • Zegowitz (2010) bewees dat het gebeurt voor Aantal atomen in het universum ca

16 Het correcte, foute computerprogramma • Hiernaast een C-programma dat een binair natuurlijk getal omzet in een decimaal getal. Het is fout. • Het algoritme is correct. • Op iedere hardware is het fout, want die rekent modulo 2 64 (bijv.). • Correctheid is niet te verifiëren door “typische” inputs te testen (>100 jaar?). Robert P. Kurshan, Program Verification, Notices AMS 47 (5), 2000

17 Ariane 5 vlucht 501, 4 juni 1996 Het omzetten van een 64-bit vlottende kommagetal naar een 16-bit geheel getal […] veroorzaakte een computer crash omdat de waarde te groot was. Het omzetten van een 64-bit vlottende kommagetal naar een 16-bit geheel getal […] veroorzaakte een computer crash omdat de waarde te groot was.bit

18 Euler of Excel? • De kleinste positieve oplossing van de Pell-vergelijking is gegeven in de tabel van Leonard Euler uit 1738 De solutione problematum diophanteorum per numeros integros. • Verifieer dat Hoe doen leerlingen het?

19 Controleer het laatste cijfer… Philip van Egmond (JCU)

20 Computeralgebrafouten • Derive (1996) berekende • Mathematica 7 gaf twee oplossingen voor • Sage 5.10 bewees Aanleren dat dit kan gebeuren?

21 Principiele onmogelijkheid Er bestaat een diophantische vergelijking afhankelijk van een parameter t, zodat er geen computerprogramma bestaat dat voor iedere waarde van t in eindige tijd kan beslissen of de vergelijking een oplossing in gehele getallen heeft of niet. Onbeslisbaarheidsresultaten (Stelling van Gödel, Hilbert’s 10e probleem) stellen grenzen aan wat bewijsbaar is. GC, Diophantische vergelijkingen mogelijkheden en onmogelijkheden wiskunde-D module

22 • Foute vermoedens opstellen op basis van te weinig informatie • Foute programma’s/algoritmen gebruiken, met (soms) catastrofale gevolgen • Rekenprogramma’s gebruiken die fouten maken • Grenzen aan het mogelijk berekenbare

23

24 Filosofisch-onderwijskundig Coda

25 toolbox wiskundige methoden • afbeeldingen - meetkundig • structuren - algebraïsch • formules - rekentechnisch • algoritmisch - combinatorisch • taalkundig - modellerend? stijlen?denkwijzen? algemene vaardigheden? wiskundige vaardigheden leren door “cijferen” leren door “cijferen”

26 • In de klas kunnen dankzij de computer berekeningen worden uitgevoerd die vroeger “hogere wiskunde” waren. Dit geeft kansen: • historische motivatie • leren “rekenen” als attitude • Is het mogelijk tegelijkertijd “rekenen” als attitude/(onderzoeks-)methode en een kritische/sceptische houding aan te leren?

27 Samenvatting • Rekenen in de getaltheorie: testen en opstellen van vermoedens; bijv. priemtelfunctie • “Riemannhypothese” in de klas: het kan • Ook scepsis bij rekenen “aanleren”


Download ppt "Euler of Excel? Hoe computers en rekenmachines de getaltheorie beïnvloeden door Gunther Cornelissen van de Universiteit Utrecht."

Verwante presentaties


Ads door Google